Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Surface Reconstruction In Iron Garnets, Sushree Dash Jan 2023

Surface Reconstruction In Iron Garnets, Sushree Dash

Dissertations, Master's Theses and Master's Reports

This dissertation presents the results of a study investigating the physical mechanisms underlying an unexpectedly large increase in magneto-optic efficiency observed in iron garnet. Such materials are technologically important for telecommunications due to their nonreciprocal optical action. In the past, our group had found evidence of an enhanced Faraday rotation in bismuth-substituted iron garnet films less than 50 nm thick. Subsequent investigation revealed that this enhancement could be traced to surface effects. This is significant because understanding these phenomena could be used to formulate engineering solutions for device miniaturization. In this dissertation, we present the result of a research project …


Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva Jan 2022

Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva

Dissertations, Master's Theses and Master's Reports

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments. The focus of this thesis is 2D materials especially graphene and BN studied using density functional theory (DFT) and molecular dynamics (MD) simulations. In the first half of the thesis, the electronic structure and optical properties are discussed for graphene, antimonene, and borophene. It is found that the absorbance in (atomically flat) multilayer antimonene (group …


Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky Jan 2021

Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky

Dissertations, Master's Theses and Master's Reports

Atmospheric scientists and climate modelers are faced with uncertainty around the process of ice production in clouds. While significant progress has been made in predicting homogeneous and heterogeneous ice nucleation rates as a function of temperature, recent experiments have shown that ice nucleation rates can be enhanced without decreasing temperature, through various mechanical agitations. One hypothesis for these findings is that mechanisms of stretching water and thereby inducing negative pressure in the liquid could lead to an increase in freezing rate. To better understand the viability of this concept, the effect of negative pressure on ice nucleation rates needs to …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


Energy Transfer Between Eu2+ And Mn2+ For Na(Sr,Ba)Po4 And Ba2mg(Bo3)2, Kevin Bertschinger Jan 2019

Energy Transfer Between Eu2+ And Mn2+ For Na(Sr,Ba)Po4 And Ba2mg(Bo3)2, Kevin Bertschinger

Dissertations, Master's Theses and Master's Reports

There is no debate of the affect that solid-state lighting has had on the world we live in. Throughout the centuries, lighting has continued to improve from kerosene lanterns to white light emitting diodes. Even though lighting today is sufficient there is still much room to improve color rendering index and efficiency. An active area of research to improve today's lighting technology is by doping inorganic phosphors with luminescent ion centers. There have been numerous reports of inorganic phosphors showing a variety of emission color and luminescence. In this thesis we discuss two new inorganic phosphors codoped with Eu2+ …


Physics And Applications Of Exceptional Points, Qi Zhong Jan 2019

Physics And Applications Of Exceptional Points, Qi Zhong

Dissertations, Master's Theses and Master's Reports

Exceptional points (EPs) are singularities that arise in non-Hermitian physics. Crossing EPs is believed to be related with phase transitions between parity-time-(PT-)symmetric phase and broken PT phase. Owing to their peculiar topology, EPs can remotely induce observable effects when encircled by closed trajectories in the parameter space. In this dissertation, first of all, we investigate the extreme dynamics of non-Hermitian systems near higher order EPs constructed using the bosonic algebra method. The strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. And in the PT …


Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola Jan 2018

Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola

Dissertations, Master's Theses and Master's Reports

Recent work performed by A. Chakravarty and M. Levy showed experimentally a dramatic increase in the specific Faraday Rotation (FR) of the iron garnet Bi0.8Lu0.2Gd2Fe5O12. A theoretical model, based purely on classical electrodynamics, attempting to explain this behavior was developed by colleagues in Russia that not only confirmed the asymptotic increase in the specific FR at sub-50nm film thicknesses but also suggested that the specific FR should exhibit significant fluctuations at sub-500 nm film thicknesses. The original data points were widespread with steps of 50 nm or more between data …


An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur Jan 2016

An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur

Dissertations, Master's Theses and Master's Reports

Evaporation is ubiquitous in nature and occurs even in a microgravity space envi- ronment. Long term space missions require storage of cryogenic propellents and an accurate prediction of phase change rates. Kinetic theory has been used to model and predict evaporation rates for over a century but the reported values of accommodation coefficients are highly inconsistent and no accurate data is available for cryogens. The proposed study involves a combined experimental and computational approach to ex- tract the accommodation coefficients. Neutron imaging is used as the visualization technique due to the difference in attenuation between the cryogen and the metallic …


Relativistic Configuration Interaction Calculations Of The Atomic Properties Of Selected Transition Metal Positive Ions; Ni Ii, V Ii And W Ii, Marwa Hefny Abdalmoneam Jan 2015

Relativistic Configuration Interaction Calculations Of The Atomic Properties Of Selected Transition Metal Positive Ions; Ni Ii, V Ii And W Ii, Marwa Hefny Abdalmoneam

Dissertations, Master's Theses and Master's Reports

Relativistic Configuration Interaction (RCI) method has been used to investigate atomic properties of the singly ionized transition metals including Nickel (Ni II), Vanadium (V II), and Tungsten (W II). The methodology of RCI computations was also improved. Specifically, the method to shift the energy diagonal matrix of the reference configurations was modified which facilitated including the effects of many electronic configurations that used to be difficult to be included in the energy matrix and speeded-up the final calculations of the bound and continuum energy spectrum. RCI results were obtained for three different cases:

  1. Atomic moments and polarizabilities of Ni II; …