Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni Dec 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen–Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a “probability amplitude.” A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper, we present a new perspective on such determinism. The ideas are based on the equations of motion or “Quantal Newtonian” Laws obeyed by each electron. These Laws, derived from …


Coupled Spherical-Cavities, Stanislav Kreps, Vladimir Shuvayev, Mark Douvidzon, Baheej Bathish, Tom Lenkiewicz Abudi, Amirreza Ghaznavi, Jie Xu, Yang Lin, Lev Deych, Tal Carmon Dec 2022

Coupled Spherical-Cavities, Stanislav Kreps, Vladimir Shuvayev, Mark Douvidzon, Baheej Bathish, Tom Lenkiewicz Abudi, Amirreza Ghaznavi, Jie Xu, Yang Lin, Lev Deych, Tal Carmon

Publications and Research

In this work, we study theoretically and experimentally optical modes of photonic molecules—clusters of optically coupled spherical resonators. Unlike previous studies, we do not use stems to hold spheres in their positions relying, instead on optical tweezers to maintain desired structures. The modes of the coupled resonators are excited using a tapered fiber and are observed as resonances with a quality factor as high as 107. Using the fluorescent mapping technique, we observe families of coupled modes with similar spatial and spectral shapes repeating every free spectral range (a spectral separation between adjacent resonances of individual spheres). Experimental results are …


Whispering Gallery Modes Of A Triatomic Photonic Molecule, Vladimir Shuvayev, Stanislav Kreps, Tal Carmon, Lev Deych Nov 2022

Whispering Gallery Modes Of A Triatomic Photonic Molecule, Vladimir Shuvayev, Stanislav Kreps, Tal Carmon, Lev Deych

Publications and Research

In this paper, we present the results of numerical simulations of the optical spectra of a three-sphere photonic molecule. The configuration of the system was continuously modified from linear to triangular, in-plane with the fundamental mode excited in one of the spheres and perpendicular to it. We found the relative insensitivity of the spectra to the in-plane deviation from the linear arrangement up to about 110°. For larger angles, the spectra show significant modification consisting of the major spectral peaks splitting and shifting. On the contrary, the spectra are quite sensitive to out-of-plane molecule deviation, even at small angles. Thus, …


The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni Aug 2022

The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni

Publications and Research

A complementary perspective to the Göttingen-Copenhagen interpretation of stationary-state quantum theory of electrons in an electromagnetic field is described. The perspective, derived from Schrödinger-Pauli theory, is that of the individual electron via its equation of motion or ‘Quantal Newtonian’ First Law. The Law is in terms of ‘classical’ fields experienced by each electron: the sum of the external and internal fields vanishes. The external field is a sum of the electrostatic and Lorentz fields. The internal field is a sum of fields’ representative of Pauli and Coulomb correlations; kinetic effects; electron density; and internal magnetic component. The energy is obtained …


Symmetries, Zero Modes And Light Transport In Non-Hermitian Photonics, Jose David Hernandez Rivero Jun 2022

Symmetries, Zero Modes And Light Transport In Non-Hermitian Photonics, Jose David Hernandez Rivero

Dissertations, Theses, and Capstone Projects

We approach some fundamental aspects of photonic dissipative systems treated by a non-Hermitian theory. Inspired by the possibilities provided by some major non-Hermitian symmetries, we study systematically the properties of the novel pseudochirality, pseudo-anti-Hermiticity, and supersymmetry. We analyze other aspect of photonics, the zero mode, which has a profound connection to non-Hermitian physics. We propose a scheme to realize a zero mode that exists even in the absence of symmetries. Finally, we approach light transport in non-Hermitian photonic systems, where the introduction of gain and loss can modify drastically the propagation speed of wavepackets.


Dissociative Excitation, Ionization, And Fragmentation Processes For Nitrogen, Oxygen, Methane, And Water Molecules By Electron Bombardment, M. Gochitashvili, R. Lomsazde, D. Kuparashvili, O. Taboridze, Roman Ya. Kezerashvili Apr 2022

Dissociative Excitation, Ionization, And Fragmentation Processes For Nitrogen, Oxygen, Methane, And Water Molecules By Electron Bombardment, M. Gochitashvili, R. Lomsazde, D. Kuparashvili, O. Taboridze, Roman Ya. Kezerashvili

Publications and Research

Electron–impact ionization and fragmentation of molecules are investigated by the chromatography mass-spectrometry device. While the excitation processes are investigated by an optical spectroscopy method. The spectral analysis is performed in the vacuum ultraviolet 50-130 nm spectral regions. The absolute value of the fragmentation cross-section in the dissociative ionization and excitation processes is determined. Measurements are performed in the electron energy range 25-120eV for ionization and 200-500eV for excitation processes respectively.


Giant Acoustically-Induced Synthetic Hall Voltages In Graphene, Pai Zhao, Chithra H. Sharma, Renrong Liang, Christian Glasenapp, Lev Mourokh, Vadim M. Kovalev, Patrick Huber, Marta Prada, Lars Tiemann, Robert H. Blick Jan 2022

Giant Acoustically-Induced Synthetic Hall Voltages In Graphene, Pai Zhao, Chithra H. Sharma, Renrong Liang, Christian Glasenapp, Lev Mourokh, Vadim M. Kovalev, Patrick Huber, Marta Prada, Lars Tiemann, Robert H. Blick

Publications and Research

Any departure from graphene’s flatness leads to the emergence of artificial gauge fields that act on the motion of the Dirac fermions through an associated pseudomagnetic field. Here, we demonstrate the tunability of strong gauge fields in nonlocal experiments using a large planar graphene sheet that conforms to the deformation of a piezoelectric layer by a surface acoustic wave. The acoustic wave induces a longitudinal and a giant synthetic Hall voltage in the absence of external magnetic fields. The superposition of a synthetic Hall potential and a conventional Hall voltage can annihilate the sample’s transverse potential at large external magnetic …


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni Jan 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen-Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a ‘probability amplitude’. A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper we present a new perspective on such determinism. The ideas are based on the equations of motion or ‘Quantal Newtonian’ Laws obeyed by each electron. These Laws, derived from the …


Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer Jan 2022

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …