Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan Nov 2016

Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field can be described from the perspective of the individual electron via the ‘Quantal Newtonian’ laws (or differential virial theorems). These laws are in terms of ‘classical’ fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) In addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, …


Control Of Spontanous Emission From Quantum Emitters Using Hyperbolic Metamaterial Substrates, Tal Galfsky Sep 2016

Control Of Spontanous Emission From Quantum Emitters Using Hyperbolic Metamaterial Substrates, Tal Galfsky

Dissertations, Theses, and Capstone Projects

Hyperbolic metamaterials (HMMs) are so named for possessing a hyperboloid-shaped dispersion which gives rise to a large photonic density of states. Quantum emitters placed inside or in the near-field of a HMM have been shown to exhibit strong enhancement of spontaneous emission due to the increase in available states. This thesis focuses on enhancing spontaneous emission of quantum emitters in optical frequencies by utilizing multilayered metal/dielectric composites that form these highly anisotropic metamaterials. In conjunction with the enhanced decay rate we experimentally demonstrate two methods for shaping and directing radiation trapped in the HMM into free space by employing a …


Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang Aug 2016

Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang

Publications and Research

Local effective potential theory, both stationary-state and time-dependent, constitutes the mapping from a system of electrons in an external field to one of the noninteracting fermions possessing the same basic variable such as the density, thereby enabling the determination of the energy and other properties of the electronic system. This paper is a description via Quantal Density Functional Theory (QDFT) of the electron correlations that must be accounted for in such a mapping. It is proved through QDFT that independent of the form of external field, (a) it is possible to map to a model system possessing all the basic …


Vector Beams For Fundamental Physics And Applications, Giovanni Milione Jun 2016

Vector Beams For Fundamental Physics And Applications, Giovanni Milione

Dissertations, Theses, and Capstone Projects

Lights salient degrees of freedom are the independent parameters that completely de- scribe an electromagnetic wave (in the paraxial approximation) and include polarization, wavelength, and time. Most recently, lights space degree of freedom has received sig- nificant attention via the sub-discipline of optics that can be referred to as complex light or structured light. The study of complex light is a veritable renaissance of optics; us- ing lights space degree of freedom many classical optics phenomena have been revisited with novel results. In this thesis, a novel form of structured light referred to as vector beams will be investigated. It …


Theoretical Analysis Of Single Molecule Spectroscopy Lineshapes Of Conjugated Polymers, Murali Devi Jun 2016

Theoretical Analysis Of Single Molecule Spectroscopy Lineshapes Of Conjugated Polymers, Murali Devi

Dissertations, Theses, and Capstone Projects

Conjugated Polymers(CPs) exhibit a wide range of highly tunable optical properties. Quantitative and detailed understanding of the nature of excitons responsible for such a rich optical behavior has significant implications for better utilization of CPs for more efficient plastic solar cells and other novel optoelectronic devices. In general, samples of CPs are plagued with substantial inhomogeneous broadening due to various sources of disorder. Single molecule emission spectroscopy (SMES) offers a unique opportunity to investigate the energetics and dynamics of excitons and their interactions with phonon modes. The major subject of the present thesis is to analyze and understand room temperature …


Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor Feb 2016

Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor

Dissertations, Theses, and Capstone Projects

The energy transfers and nature of defect levels of an organic/inorganic composite of Zinc Oxide and Graphite are studied with multidimensional spectroscopy. The edge and surface states of each composite are uncovered using excitation emission experiments showing which defect states are mediating the energy transfer from the metal oxide to the graphite oxide. Multidimensional time resolved spectroscopy further describes the effect of the carbon phase on the energy transfer pathways in the material.


Zncdmgse As A Materials Platform For Advanced Photonic Devices: Broadband Quantum Cascade Detectors And Green Semiconductor Disk Lasers, Joel De Jesus Feb 2016

Zncdmgse As A Materials Platform For Advanced Photonic Devices: Broadband Quantum Cascade Detectors And Green Semiconductor Disk Lasers, Joel De Jesus

Dissertations, Theses, and Capstone Projects

The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for …