Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Resonant Collisions Of Potassium Atoms, Philip Michael Adamson Jan 2016

Resonant Collisions Of Potassium Atoms, Philip Michael Adamson

Honors Theses

This thesis discusses an approach to excite potassium atoms to very highly excited states (Rydberg states), and then tune their energy levels to induce resonant collisions between atoms. Potassium gas is super-cooled to 1 mK and confined to a small volume in a magneto-optical trap. A 405 nm laser diode, electronically locked to a potassium vapor cell via Doppler free spectroscopy, excites these atoms from the 4s1/2 state (ground state) to the 5p3/2 state. A 978 nm laser then excites the 5p3/2 to nd3/2 or nd5/2 transition, creating Rydberg atoms. Since there is no ground …


Unmasking The Mysteries Of High-Mass X-Ray Binaries (Hmxbs): The Role Of The Electron Beam Ion Trap (Ebit), Carey L. Baxter, Greg Brown, Natalie Hell Aug 2012

Unmasking The Mysteries Of High-Mass X-Ray Binaries (Hmxbs): The Role Of The Electron Beam Ion Trap (Ebit), Carey L. Baxter, Greg Brown, Natalie Hell

Carey L Baxter

The Electron Beam Ion Trap (EBIT) uses a very narrow electron beam (~60μm) to excite and trap ions. X-ray emissions of the excited ions are then diffracted and analyzed. I studied specific spectral emission lines of ionized silicon. This data can be used as a point of reference for similar spectra measured by the satellite Chandra so that the Doppler shift due to wind around the accretion disks of High Mass X-ray Binaries (HMXBs) can be calculated. HMXBs are pairs of stars that are luminous in X-rays. They are composed of a donor star that gives up mass to an …


Techniques To Characterize Vapor Cell Performance For A Nuclear-Magnetic-Resonance Gyroscope, James Julian Mirijanian May 2012

Techniques To Characterize Vapor Cell Performance For A Nuclear-Magnetic-Resonance Gyroscope, James Julian Mirijanian

Master's Theses

Research was performed to improve the procedures for testing performance parameters of vapor cells for a nuclear-magnetic-resonance gyroscope. In addition to summarizing the theoretical infrastructure of the technology, this research resulted in the development and successful implementation of new techniques to characterize gyro cell performance.

One of the most important parameters to measure for gyro performance is the longitudinal spin lifetime of polarized xenon atoms in the vapor cell. The newly implemented technique for measuring these lifetimes matches results from the industry standard method to within 3.5% error while reducing the average testing time by 76% and increasing data resolution …


Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley Dec 2009

Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley

Physics

A magneto-optical trap, or MOT, is a device that traps atoms between three pairs of opposing perpendicular laser beams for cooling the atoms to temperatures near absolute zero. The MOT uses Doppler cooling and a magnetic quadrupole field to trap the atoms; in our case, Rb87 atoms. In the future, the MOT will be used in experiments pertaining to the advancement of quantum computing. In this paper, I explain some of the processes required for construction and operation of the MOT.