Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

PDF

2015

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 116

Full-Text Articles in Physics

Momentum Of Particles From Time-Of-Flight Measurements, Joseph Best Dec 2015

Momentum Of Particles From Time-Of-Flight Measurements, Joseph Best

Senior Theses

In order to find the momentum of particles from time of flight measurements, I used a program called Geant4 to simulate experiments. I made a simple two detector setup, and I recreated a real world experiment. I spent a lot of time learning to code in C++ so I could use Geant4 correctly. I simulated these experiments shooting electrons, muons, and pions through the geometry and measured the time at two points in their flight. Subtracting the second time from the first gave me the time of flight distribution for each particle. I used ROOT to draw histograms of the …


Strontium Monoxide Measurements In Methane-Air Flames, Bobby J. Wimberly Dec 2015

Strontium Monoxide Measurements In Methane-Air Flames, Bobby J. Wimberly

Masters Theses

The spectroscopy of alkaline earth metal compounds has been an area of active research for several decades. This is at least in part stimulated by the application of these compounds to practical areas ranging from technology to medicine. The use of these compounds in the field of pyrotechnics was the motivation for a series of flame emission spectroscopy (FES) experiments with strontium containing compounds. Specifically, strontium monoxide (SrO) is studied as a candidate radiator for the diagnostic of methane-air flames.

SrO emissions have been observed in flames with temperatures in the range of 1200-1600-K for two compounds: strontium hydroxide and …


Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi Dec 2015

Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi

Theses and Dissertations

One of the major challenges posed to our quantitative understanding of structure, dynamics, and function of biological macromolecules has been the high level of complexity of biological structures. In the present work, we studied interactions between G protein-coupled receptors (GPCRs), and also introduced a theoretical model of relaxation in complex systems, in order to help understand interactions and relaxation in biological macromolecules.

GPCRs are the largest and most diverse family of membrane receptors that play key roles in mediating signal transduction between outside and inside of a cell. Oligomerization of GPCRs and its possible role in function and signaling currently …


Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni Nov 2015

Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle …


Effect Of Sm Content On Energy Product Of Rapidly Quenched And Oriented Smco5 Ribbons, Wenyong Zhang, Xingzhong Li, Shah R. Valloppilly Nov 2015

Effect Of Sm Content On Energy Product Of Rapidly Quenched And Oriented Smco5 Ribbons, Wenyong Zhang, Xingzhong Li, Shah R. Valloppilly

Nebraska Center for Materials and Nanoscience: Faculty Publications

The Sm-content dependence of phase composition, anisotropy, and other magnetic properties of Sm1+δCo5 (δ ≤ 0.12) ribbons melt spun at 10 m/s has been studied. The samples consist of hexagonal SmCo5 grains whose c axes are preferentially aligned along the long direction of the ribbon. The lattice parameter a and the cell volume (V) increase with increasing Sm content δ, whereas c decreases. Sm addition appears to improve the degree of the preferred orientation of the c-axis and to increase the mean grain size, which weakens the effective intergranular exchange …


Two-Neutron Sequential Decay Of 24o, M. D. Jones, N. Frank, T. Baumann, J. Brett, J. Bullaro, P. A. Deyoung, J.E. Finck, K. Hammerton, J. Hinnefeld, Z. Kohley, A. N. Kuchera, J. Pereira, A. Rabeh, W. F. Rogers, J. K. Smith, A. Spyrou, Sharon L. Stephenson, K. Stiefel, M. Tuttle-Timm, R. G.T. Zegers, M. Thoennessen Nov 2015

Two-Neutron Sequential Decay Of 24o, M. D. Jones, N. Frank, T. Baumann, J. Brett, J. Bullaro, P. A. Deyoung, J.E. Finck, K. Hammerton, J. Hinnefeld, Z. Kohley, A. N. Kuchera, J. Pereira, A. Rabeh, W. F. Rogers, J. K. Smith, A. Spyrou, Sharon L. Stephenson, K. Stiefel, M. Tuttle-Timm, R. G.T. Zegers, M. Thoennessen

Physics and Astronomy Faculty Publications

A two-neutron unbound excited state of 24O was populated through a (d,d ) reaction at 83.4 MeV/nucleon. A state at E = 715 ± 110 (stat) ± 45 (sys) keV with a width of < 2 MeV was observed above the two-neutron separation energy placing it at 7.65 ± 0.2 MeV with respect to the ground state. Three-body correlations for the decay of 24O → 22O + 2n show clear evidence of a sequential decay through an intermediate state in 23O. Neither a di-neutron nor phase-space model for the three-body breakup were able to describe these correlations.


Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams Nov 2015

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams

Faculty Scholarship

Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae …


Population Of 13be In A Nucleon Exchange Reaction, B. R. Marks, P. A. Deyoung, J. K. Smith, T. Baumann, J. Brown, N. Frank, J. Hinnefeld, M. Hoffman, M. D. Jones, Z. Kohley, A. N. Kuchera, B. Luther, A. Spyrou, Sharon L. Stephenson, C. Sullivan, M. Thoennessen, N. Viscariello, S. J. Williams Nov 2015

Population Of 13be In A Nucleon Exchange Reaction, B. R. Marks, P. A. Deyoung, J. K. Smith, T. Baumann, J. Brown, N. Frank, J. Hinnefeld, M. Hoffman, M. D. Jones, Z. Kohley, A. N. Kuchera, B. Luther, A. Spyrou, Sharon L. Stephenson, C. Sullivan, M. Thoennessen, N. Viscariello, S. J. Williams

Physics and Astronomy Faculty Publications

The neutron-unbound nucleus Be13 was populated with a nucleon exchange reaction from a 71 MeV/u secondary B13 beam. The decay-energy spectrum was reconstructed using invariant mass spectroscopy based on Be12 fragments in coincidence with neutrons. The data could be described with an s-wave resonance at Er=0.73(9)MeV with a width of Γr=1.98(34)MeVand a d-wave resonance at Er=2.56(13)MeV with a width of Γr=2.29(73)MeV. The observed spectral shape is consistent with previous one-proton removal reaction measurements from B14.


Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon Nov 2015

Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon

Computational Modeling & Simulation Engineering Faculty Publications

The computational efficiency and energy-to-solution of several applications using the GAMESS quantum chemistry suite of codes is evaluated for 32-bit and 64-bit ARM-based computers, and compared to an x86 machine. The x86 system completes all benchmark computations more quickly than either ARM system and is the best choice to minimize time to solution. The ARM64 and ARM32 computational performances are similar to each other for Hartree-Fock and density functional theory energy calculations. However, for memory-intensive second-order perturbation theory energy and gradient computations the lower ARM32 read/write memory bandwidth results in computation times as much as 86% longer than on the …


Differential, Partial Cross Sections For Electron Excitation Of The Sodium 3p State, Xianming Han, G. W. Schwinn, A. Gallagher Oct 2015

Differential, Partial Cross Sections For Electron Excitation Of The Sodium 3p State, Xianming Han, G. W. Schwinn, A. Gallagher

Xianming Han

Using a powerful laser-based experimental method, the cross section for electron excitation of Na(3S) atoms to the Na(3P) state has been decomposed into partial components with respect to changes in the spin and angular momentum of the atomic electron, and these partial cross sections are further reduced to their differential character with respect to the electron scattering angle. Partial, differential cross sections are reported for electron collision energies from threshold 2.1 to 3.6 eV, and compared to available calculations.


Superfluorescence Polarization: Signature Of Collisional Redistribution, A. Kumarakrishnan, S. Chudasama, Xianming Han Oct 2015

Superfluorescence Polarization: Signature Of Collisional Redistribution, A. Kumarakrishnan, S. Chudasama, Xianming Han

Xianming Han

We have studied effects of magnetic sublevel degeneracy on the polarization of superfluorescent pulses generated on the Ca 4s4p1P1–3d4s1D2 transition at 5.5μm. These pulses were generated from a cell of length 50 cm by optically pumping calcium vapor on the 4s21S0–4s4p1P1 transition in the presence of Ar gas. The axis of ellipticity of superfluorescence (SF) polarization is oriented parallel to the axis of the pump-laser polarization at large detunings, and undergoes an abrupt rotation through 90° for detunings close to resonance. The distribution of populations in the magnetic sublevels of the 1P1 state can be estimated using a simple model …


Fine‐Structure Mixing Within The Zn(43pj) Multiplet By Collisions With The Noble Gases, Xianming Han, J. F. Kelly Oct 2015

Fine‐Structure Mixing Within The Zn(43pj) Multiplet By Collisions With The Noble Gases, Xianming Han, J. F. Kelly

Xianming Han

Measurements of rate coefficients for intramultiplet state transfer of Zn(4 3 P 1→4 3 P J) by collisions with the rare gases are presented. The state‐to‐state binary rate coefficients are derived from least‐squares fittings of the time‐resolved triexponential behavior of the 4 3 P 1fluorescence. These rate coefficients were studied systematically over a temperature range of 690–1100 K in order to characterize the velocity dependence of the collisional coupling. The systematic behavior of the rate coefficients with varying temperature and noble gas species is qualitatively consistent with a nearly adiabatic coupling limit for noncrossing levels.


Spin-Exchange Cross Section For Electron Excitation Of Na 3s 3p Determined By A Novel Spectroscopic Technique, Xianming Han, G. W. Schwinn, A. Gallagher Oct 2015

Spin-Exchange Cross Section For Electron Excitation Of Na 3s 3p Determined By A Novel Spectroscopic Technique, Xianming Han, G. W. Schwinn, A. Gallagher

Xianming Han

An experimental technique is described which enables determination of the partial cross sections for electron excitation of atoms as a function of changes in spin and orbital angular momentum. This method provides a good signal-to-noise ratio in the energy region near threshold, and could be used to study long- or short-lived excited states of many atomic systems. Measurements for Na 3S−3P, near-threshold excitation are reported here. The results are generally in good agreement with the close-coupling calculations of D. L. Moores and D. W. Norcross [J. Phys. B 5, 1482 (1972)] for the largest ΔmS and ΔmL components of the …


Superfluorescence From Optically Trapped Calcium Atoms, Xianming Han Oct 2015

Superfluorescence From Optically Trapped Calcium Atoms, Xianming Han

Xianming Han

We have studied superfluorescence (SF) under highly unfavorable conditions of rapid collisional and radiative distribution in a Doppler-broadened medium. Nanosecond SF pulses at 5.5 μm were generated on the Ca 4s4p1P1–3d4s1D2 transition from a column of calcium vapor buffered with Ar by optically pumping the 4s21S0–4s4p1P1 transition. The Rabi frequency associated with the intense pump pulse prevents the occurrence of SF while the pump laser is on. As a result, the predicted scaling laws that describe the properties of SF in a transversely excited system, such as peak heights, pulse widths, and delay times, are shown to apply in our …


Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni Oct 2015

Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle …


Hyperpolarized 129xe Magnetic Resonance Imaging Of Radiation-Induced Lung Injury, Ozkan Doganay Oct 2015

Hyperpolarized 129xe Magnetic Resonance Imaging Of Radiation-Induced Lung Injury, Ozkan Doganay

Electronic Thesis and Dissertation Repository

Lung cancer is the largest contributor to cancer-related mortality worldwide. Only 20% of stage III non-small cell lung cancer patients survive after 5-years post radiation therapy (RT). Although RT is an important treatment modality for lung cancer, it is limited by Radiation-Induced Lung Injury (RILI). RILI develops in two phases: (i) the early phase (days-weeks) referred to radiation pneumonitis (RP), and (ii) the late phase (months). There is a strong interest in early detection of RP using imaging to improve outcomes of RT for lung cancer. This thesis describes a promising approach based on 129Xe gas as a contrast …


Quantum Interference In The Field Ionization Of Rydberg Atoms, Rachel Feynman, Jacob A. Hollingsworth, Michael Vennettilli, Tamas Budner, Ryan Zmiewski, Donald P. Fahey, Thomas J. Carroll, Michael W. Noel Oct 2015

Quantum Interference In The Field Ionization Of Rydberg Atoms, Rachel Feynman, Jacob A. Hollingsworth, Michael Vennettilli, Tamas Budner, Ryan Zmiewski, Donald P. Fahey, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

We excite ultracold rubidium atoms in a magneto-optical trap to a coherent superposition of the three |mj | sublevels of the 37d5/2 Rydberg state. After some delay, during which the relative phases of the superposition components can evolve, we apply an electric field pulse to ionize the Rydberg electron and send it to a detector. The electron traverses many avoided crossings in the Stark levels as it ionizes. The net effect of the transitions at these crossings is to mix the amplitudes of the initial superposition into the same final states at ionization. Similar to a Mach-Zehnder interferometer, the three …


A Multilayer Surface Detector For Ultracold Neutrons Sep 2015

A Multilayer Surface Detector For Ultracold Neutrons

Robert W. Pattie Jr.

A multilayer surface detector for ultracold neutrons (UCNs) is described. The top 10B layer is exposed to the vacuum chamber and directly captures UCNs. The ZnS:Ag layer beneath the 10B layer is a few microns thick, which is sufficient to detect the charged particles from the 10B(n,α)7Li neutron-capture reaction, while thin enough so that ample light due to α and 7Li escapes for detection by photomultiplier tubes. One-hundred-nm thick 10B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials and others. Low background, including …


Reconfigurable Large-Area Magnetic Vortex Circulation Patterns, Robert Streubel, Florian Kronast, Ulrich K. Rößler, Oliver G. Schmidt, Denys Makarov Sep 2015

Reconfigurable Large-Area Magnetic Vortex Circulation Patterns, Robert Streubel, Florian Kronast, Ulrich K. Rößler, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

Magnetic vortices in nanodots own a switchable circulation sense. These nontrivial magnetization configurations can be arranged into extended and interacting patterns. We have experimentally created large arrays of magnetically reconfigurable vortex patterns in nonplanar honeycomb lattices using particle lithography. Optimizing height asymmetry of the vertices and applying an in-plane magnetic field provide means to switch between homocircular and staggered vortex patterns with a potentially high impact on magnonics and spintronics relying on chiral noncollinear spin textures. To this end, exchange coupling of extended vortex lattices with an out-of-plane magnetized layer allows one to realize artificial skyrmionic core textures with controllable …


Monoclinic Optical Constants, Birefringence, And Dichroism Of Slanted Titanium Nanocolumns Determined By Generalized Ellipsometry, Daniel Schmidt, Benjamin Booso, Tino Hofmann, Eva Schubert, Andrew Sarangan, Mathias Schubert Sep 2015

Monoclinic Optical Constants, Birefringence, And Dichroism Of Slanted Titanium Nanocolumns Determined By Generalized Ellipsometry, Daniel Schmidt, Benjamin Booso, Tino Hofmann, Eva Schubert, Andrew Sarangan, Mathias Schubert

Andrew Sarangan

Generalized spectroscopic ellipsometry determines the principal monoclinic optical constants of thin films consisting of slanted titanium nanocolumns deposited by glancing angle deposition under 85° incidence and tilted from the surface normal by 47°. Form birefringence measured for wavelengths from 500 to 1000 nm renders the Ti nanocolumns monoclinic absorbing crystals with c-axis along the nanocolumns, b-axis parallel to the film interface, and 67.5° monoclinic angle between the aand c-axes. The columnar thin film reveals anomalous optical dispersion, extreme birefringence, strong dichroism, and differs completely from bulk titanium. Characteristic bulk interband transitions are absent in the spectral range investigated.


Magnetization Dynamics Of Imprinted Non-Collinear Spin Textures, Robert Streubel, Peter Fischer, Martin Kopte, Oliver G. Schmidt, Denys Makarov Sep 2015

Magnetization Dynamics Of Imprinted Non-Collinear Spin Textures, Robert Streubel, Peter Fischer, Martin Kopte, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics …


Electron Vortices In Photoionization By Circularly Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, Anthony F. Starace Sep 2015

Electron Vortices In Photoionization By Circularly Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, Anthony F. Starace

Anthony F. Starace Publications

Single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses is shown to produce photoelectron momentum distributions in the polarization plane having helical vortex structures sensitive to the time delay between the pulses, their relative phase, and their handedness. Results are obtained by both ab initio numerical solution of the two-electron time-dependent Schrödinger equation and by a lowest-order perturbation theory analysis. The energy, bandwidth, and temporal duration of attosecond pulses are ideal for observing these vortex patterns.


Imaging Of Alignment And Structural Changes Of Carbon Disulfide Molecules Using Ultrafast Electron Diffraction, Jie Yang, Joshua Beck, Cornelis J. Uiterwaal, Martin Centurion Sep 2015

Imaging Of Alignment And Structural Changes Of Carbon Disulfide Molecules Using Ultrafast Electron Diffraction, Jie Yang, Joshua Beck, Cornelis J. Uiterwaal, Martin Centurion

Martin Centurion Publications

Imaging the structure of molecules in transient-excited states remains a challenge due to the extreme requirements for spatial and temporal resolution. Ultrafast electron diffraction from aligned molecules provides atomic resolution and allows for the retrieval of structural information without the need to rely on theoretical models. Here we use ultrafast electron diffraction from aligned molecules and femtosecond laser mass spectrometry to investigate the dynamics in carbon disulfide following the interaction with an intense femtosecond laser pulse. We observe that the degree of alignment reaches an upper limit at laser intensities below the ionization threshold, and find evidence of structural deformation, …


Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick Aug 2015

Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick

Department of Physics and Astronomy: Faculty Publications

In this paper we present an analysis of the spin behavior of electrons propagating through a laser field. We present an experimentally realizable scenario in which spin-dependent effects of the interaction between the laser and the electrons are dominant. The laser interaction strength and incident electron velocity are in the nonrelativistic domain. This analysis may thus lead to novel methods of creating and characterizing spin-polarized nonrelativistic femtosecond electron pulses.


Using Dissipative Particle Dynamics For Modeling Surfactants, Yuchen Zhang, Arezoo M. Ardekani Aug 2015

Using Dissipative Particle Dynamics For Modeling Surfactants, Yuchen Zhang, Arezoo M. Ardekani

The Summer Undergraduate Research Fellowship (SURF) Symposium

Oil recovery is an industrial process that injects aqueous solutions into an oil reservoir to pump out crude oil and promote the oil production. The aqueous solution contains surfactants for reducing the interfacial tension (IFT) between aqueous phase and oil. The critical micelle concentration (CMC) is the concentration of surfactant above which micelles form and the interfacial tension reaches a plateau. Our research seeks to measure IFT and CMC for surfactants using dissipative particle dynamics (DPD) technique, which is a coarse-grained method based on the molecular dynamics. We first study how IFT is influenced by the surfactant concentration. Furthermore, another …


Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen Aug 2015

Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quantum simulation using ultra-cold atoms, such as Bose-Einstein Condensates (BECs), offers a very flexible and well controlled environment to simulate physics in different systems. For example, to simulate the effects of spin orbit coupling (SOC) on electrons in solid state systems, we can make a SOC BEC which mimics the behavior of SOC electrons. The goal of this project is to see how the superfluid property of BECs change in the presence of SOC. In particular, we plan to measure the critical velocity of an 87Rb BEC with and without SOC by stirring it with a laser. This laser needs …


Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu Aug 2015

Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu

Doctoral Dissertations

This thesis includes two main parts: (I) The CH3[methyl radical] detection in methane/air flames and (II) the rotational temperature measurement of O2[molecular oxygen] in a variety of environments by using coherent microwave Rayleigh scattering from resonance enhanced multiphoton ionization (Radar REMPI).

In first the part, from Chapter I to Chapter III, the methyl radical detection and quantitative measurements have been conducted in hydrocarbon flame with one-dimensional and two-dimensional spatial-resolved concentration distribution. Due to the proximity of the argon resonance state (4+1 REMPI by 332.5 nm) with the CH3 state (2+1 REMPI by 333.6 nm), in …


Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou Aug 2015

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou

STAR Program Research Presentations

Metal organic frameworks (MOFs) are synthetic materials made of a cage-like lattice of metal nodes connected by organic linkers. The pores between the nodes define the characteristics of the material. A MOF, MIL-101, has shown great capacity in the adsorption of carbon dioxide and methane, as well as in hydrogenation catalysis with palladium. While there has been success in synthesizing MIL-101 and other MOFs, the mechanistic details behind their assembly remain unknown. Understanding the synthesis mechanism is necessary to understand the kinetics involved and be able to produce this useful material on an industrial scale. Using MIL-101 as a prototypical …


Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion Aug 2015

Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion

Martin Centurion Publications

Electron diffraction is a valuable tool to capture structural information from molecules in the gas phase. However, the information contained in the diffraction patterns is limited due to the random orientation of the molecules. Additional structural information can be retrieved if the molecules are aligned. Molecules can be impulsively aligned with femtosecond laser pulses, producing a transient alignment. The alignment persists only for a time on the order of a picosecond, so a pulsed electron gun is needed to record the diffraction patterns. In this manuscript, we describe the alignment process and show the changes in the diffraction pattern as …


Scaling Laws For High-Order-Harmonic Generation With Midinfrared Laser Pulses, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace Aug 2015

Scaling Laws For High-Order-Harmonic Generation With Midinfrared Laser Pulses, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace

Anthony F. Starace Publications

We derive an analytic expression for thewavelength scaling of the high-order-harmonic generation (HHG) yield induced by midinfrared driving laser fields. It is based on a quasiclassical description of the returning electron wave packet, which is shown to be largely independent of atomic properties. The accuracy of this analytic expression is confirmed by comparison with results of numerical solutions of the time-dependent Schr¨odinger equation for wavelengths in the range of 1.4 μm ≤ λ ≤ 4 μm. We verify the wavelength scaling of the HHG yield found numerically for midinfrared laser fields in a recent paper by Le et al. [