Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

PDF

Theses/Dissertations

2009

Articles 1 - 19 of 19

Full-Text Articles in Physics

Midwave Infrared Imaging Fourier Transform Spectrometry Of Combustion Plumes, Kenneth C. Bradley Dec 2009

Midwave Infrared Imaging Fourier Transform Spectrometry Of Combustion Plumes, Kenneth C. Bradley

Theses and Dissertations

A midwave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) was used to successfully capture and analyze hyperspectral imagery of combustion plumes. Jet engine exhaust data from a small turbojet engine burning diesel fuel at a flow rate of 300 cm3/min was collected at 1 cm−1 resolution from a side-plume vantage point on a 200x64 pixel window at a range of 11.2 meters. Spectral features of water, CO, and CO2 were present, and showed spatial variability within the plume structure. An array of thermocouple probes was positioned within the plume to aid in temperature analysis. A single-temperature …


Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley Dec 2009

Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley

Physics

A magneto-optical trap, or MOT, is a device that traps atoms between three pairs of opposing perpendicular laser beams for cooling the atoms to temperatures near absolute zero. The MOT uses Doppler cooling and a magnetic quadrupole field to trap the atoms; in our case, Rb87 atoms. In the future, the MOT will be used in experiments pertaining to the advancement of quantum computing. In this paper, I explain some of the processes required for construction and operation of the MOT.


Optical Modeling Of Schematic Eyes And The Ophthalmic Applications, Bo Tan Aug 2009

Optical Modeling Of Schematic Eyes And The Ophthalmic Applications, Bo Tan

Doctoral Dissertations

The objectives of this dissertation are to advance and broaden the traditional average eye modeling technique by two extensions: 1) population-based and personalized eye modeling for both normal and diseased conditions, and 2) demonstration of applications of this pioneering eye modeling.The first type of representative eye modeling can be established using traditional eye modeling techniques with statistical biometric information of the targeted population. Ocular biometry parameters can be mathematically assigned according to the distribution functions and correlations between parameters. For example, the axial dimension of the eye relates to age, gender, and body height factors. With the investigation results from …


Structural Role Of Pseudouridines In The Peptidyl Transferase Center Of Human 28s Ribosomal Rna, Chris Mart Aug 2009

Structural Role Of Pseudouridines In The Peptidyl Transferase Center Of Human 28s Ribosomal Rna, Chris Mart

All Theses

The human ribosome is an RNA-protein complex responsible for protein synthesis in the cell. Crystal structures of bacterial ribosomes solved to date depict no protein sidechains within the catalytic core, or peptidyl transferase center (PTC). This region of the human ribosome comprises approximately 230 highly conserved nucleotides. Notably, several of the uridine bases clustered within the human PTC are post-transcriptionally modified to pseudouridines, as compared with bacterial analogues. Pseudouridines are base-rotated uridines, linked to their sugar moieties through C5-C1' linkages, affording additional hydrogen-bond donor groups at the N1 position of their rings. A connection was recently made between the absence …


Imaging Second-Harmonic Radiation And Scattering Patterns In Zno Micro/Nanostructures, Katrina Marie Geren May 2009

Imaging Second-Harmonic Radiation And Scattering Patterns In Zno Micro/Nanostructures, Katrina Marie Geren

Graduate Theses and Dissertations

The optical characteristics of ZnO nanostructures have recently garnered interest due to the inclusion of these structures in many nanoscale optical and optoelectronic devices. This thesis will address several characteristics involving second harmonic generation and scattering in ZnO nano- and microstructures. A method will be presented for determining the nonlinear coefficients of the second order susceptibility in a single ZnO rod. This method uses transmission geometry where previous methods have employed back-reflected irradiation. The nonlinear coefficients found using this new technique were consistent with previous data from similar structures. Models will be presented for predicting the second harmonic scattering patterns …


Spiral Patterns In Liquid Crystals, Gavin Hartnett Apr 2009

Spiral Patterns In Liquid Crystals, Gavin Hartnett

Honors Capstone Projects - All

Abstract not Included


Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake Apr 2009

Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake

Physics Theses & Dissertations

A partially ionized gas is referred to as either a plasma or a discharge depending on the degree of ionization. The term discharge is usually applied to a weakly ionized gas, i.e. mostly neutrals, where as a plasma usually has a larger degree of ionization. To characterize a discharge the plasma parameters, such as the rotational temperature, vibrational temperature, and electron density, must be determined. Detailed characterization of supersonic flowing discharges is important to many applications in aerospace and aerodynamics. One application is the use of plasma-assisted hydrogen combustion devices to aid in supersonic combustion. In conditions close to the …


Demonstration And Verification Of A Broad Spectrum Anomalous Dispersion Effects Tool For Index Of Refraction And Optical Turbulence Calculations, J. Jean Cohen Mar 2009

Demonstration And Verification Of A Broad Spectrum Anomalous Dispersion Effects Tool For Index Of Refraction And Optical Turbulence Calculations, J. Jean Cohen

Theses and Dissertations

An atmospheric optical turbulence strength model with a broad wavelength range of 355nm (ultraviolet) to 8.6m (radio frequencies) has been created at AFIT and implemented into the High Energy Laser End-to-End Operational Simulation tool (HELEEOS). This modeling and simulation tool is a first principles atmospheric propagation and characterization model. Within HELEEOS lies the High-Resolution Transmission Molecular Absorption (HITRAN) database, containing 1,734,469 spectral lines for 37 different molecules as of version 12.0 (2004). HITRAN affords HELEEOS incredible accuracy for electromagnetic (EM) propagation prediction. A full understanding of optical turbulence is needed to successfully predict EM radiation propagation, particularly within the application …


Analysis And Application Of The Bi-Directional Scatter Distribution Function Of Photonic Crystals, Robert B. Lamott Mar 2009

Analysis And Application Of The Bi-Directional Scatter Distribution Function Of Photonic Crystals, Robert B. Lamott

Theses and Dissertations

Photonic crystals (PCs) are periodic structures built from materials with different refractive indices repeated at sub-wavelength intervals, which results in unusual optical characteristics, including narrowband laser protection, and zero reflectance and high absorption anomalies. Most of the research into the optical properties of PCs has concentrated only on the small range of wavelengths and angles where these effects occur. To better understand where all light leaving a PC is scattered, a Complete Angle Scatter Instrument was used to analyze the scatter from three Guided Mode Resonance Filters designed for laser protection. In the plane of incidence, measurements of the scatter …


Theoretical Model Analysis Of Absorption Of A Three Level Diode Pumped Alkali Laser, Charlton D. Lewis Ii Mar 2009

Theoretical Model Analysis Of Absorption Of A Three Level Diode Pumped Alkali Laser, Charlton D. Lewis Ii

Theses and Dissertations

This paper models the absorption phenomena of light in a three level diode pumped alkali laser system. Specifically this model calculates for a user defined set of system parameters the attenuation of the input pump beam and characteristics of the bleached wave. Using Wolfram's Mathematical 6.0 software all necessary physics for an accurate description of absorption was modeled from first principles: energy levels, cross sections, spin-orbit kinetic processes, saturation frequencies, pump attenuation, and differential transmittance, which is a representation of the bleached wave. A specific DPAL scenario was simulated, 455K system temperature, alkali concentration of 6.1 - 1013, …


The Effective Potential Energy Surfaces Of The Nonadiabatic Collision B(2PJA) + H2(1Σ+G,Ν,J) ↔ B(2PJ'A) + H2(1Σ+G,Ν',J'), Matthew B. Garvin Mar 2009

The Effective Potential Energy Surfaces Of The Nonadiabatic Collision B(2PJA) + H2(1Σ+G,Ν,J) ↔ B(2PJ'A) + H2(1Σ+G,Ν',J'), Matthew B. Garvin

Theses and Dissertations

Effective potential energy surfaces (PESs) are calculated for a nonadiabatic collision . This calculation employed 1 2A', 2 2A' and 1 2A" adiabatic PESs numerically calculated at the state-averaged multiconfigurational self-consistent field (SA-MCSCF)/configuration interaction (CI) level for several values of the H2 bond length, H2 orientation angle, and boron distance. The associated nonadiabatic coupling terms (NACTs) were calculated from the SA-MCSCF/CI wave functions using analytic gradient techniques. A line integral through the NACTs was then used to determine the adiabatic-to-diabatic mixing angle required to transform from the 1 2A' and 2 2A' …


Diffraction Of X-Waves From Multiple Rectangular Slits In An Opaque Screen, Ahmed El Saeed El Halawani Feb 2009

Diffraction Of X-Waves From Multiple Rectangular Slits In An Opaque Screen, Ahmed El Saeed El Halawani

Archived Theses and Dissertations

No abstract provided.


Computational Modeling Studies Of The Structures And Properties Of Organotin(Iv) And Stannyl-Thioether Systems With Comparisons To X-Ray Crystallography, Michelle R. Stem Joseph Jan 2009

Computational Modeling Studies Of The Structures And Properties Of Organotin(Iv) And Stannyl-Thioether Systems With Comparisons To X-Ray Crystallography, Michelle R. Stem Joseph

Open Access Theses & Dissertations

Controlling the toxic effects of organotin(IV) compounds involves engineering the structure of the molecules to optimize their properties. Molecular engineering, coupled with improved capabilities to generate reliable computational optimization models (COMs), will enable researchers to have greater success at harnessing the highly specific cytotoxicity of organotins. For example, as the thion ligand phenyl groups were replaced with Cl atoms, the S-Sn intramolecularity was strengthened, the bond distance decreased, and the stannyl tetrahedral structure was deformed from its triphenyl conformation. With each substitution, conformation deformations lowered the damaging bioactivity levels of thion. Bonding various ligands to organotin(IV) compounds …


Experimental Study Of The Response Of Semiconductor Detectors For Edxrf Analysis., Sunil Kumar Valaparla Jan 2009

Experimental Study Of The Response Of Semiconductor Detectors For Edxrf Analysis., Sunil Kumar Valaparla

Open Access Theses & Dissertations

This present work relates to the study and characterization of the response function of an energy-dispersive x-ray spectrometer. The problems of energy, efficiency and resolution calibration of the system operating in the energy (5-60 keV) range are discussed. We present the operation characteristics of the portable pyro-electric x-ray generator (COOL-X) and the application of the calibrated response spectrum in the elemental analysis using X-ray Fluorescence (XRF).

We study the response of the Si(Li)-Pin XR-100CR semiconductor detector to low energy photons. The photopeak efficiency was determined experimentally by using radioisotopes and compared against a theoretical efficiency curve. The efficiency for gamma …


The Use Of A Lock-In Amplifier To Stabilize The Frequency Of A Laser Diode, Jose M. Juarez Jan 2009

The Use Of A Lock-In Amplifier To Stabilize The Frequency Of A Laser Diode, Jose M. Juarez

College Honors Program

We have designed, constructed, and tested a lock-in amplifier with readily available electronic components and homebuilt analog circuits. Its performance is comparable to that of a commercial unit, but it costs significantly less and is much more compact. The various components of our lock-in amplifier are discussed and the basic principles behind the function and operation of this versatile device are explained. We have also assembled a laser system and used the output signal of our lock-in amplifier in a negative feedback loop to stabilize the frequency of our laser to an atomic reference frequency.


Laser Desorption From A Room Temperature Ionic Liquid, Peter Ronald Harris Jan 2009

Laser Desorption From A Room Temperature Ionic Liquid, Peter Ronald Harris

Dissertations, Theses, and Masters Projects

We report laser desorption from a Room Temperature Ionic Liquid (RTIL) as a novel source for time of flight mass spectrometry. We use the 2nd harmonic of an Nd:YAG laser to deposit intensities of 1-50 MW/cm2 via backside illumination onto our RTIL desorption sample. A microstructured metal grid situated on top of a glass microscope slide coated with RTIL serves as our desorption sample. The RTIL we use, 1-Butyl, 3-Methylimidazolium Hexafluorophosphate, remains liquid at pressures below 10-8 torr. The use of liquid desorption sample allows for improved surface conditions, homogeneity and sample life as compared to Matrix Assisted Laser Desorption …


The Effect Of Realistic Focal Conditions On Strong -Field Double Ionization, Jay Paul Paquette Jan 2009

The Effect Of Realistic Focal Conditions On Strong -Field Double Ionization, Jay Paul Paquette

Dissertations, Theses, and Masters Projects

In recent years, a great deal of progress has been made in understanding the ionization processes that result from the interaction of an intense laser pulse with multielectron atoms. However, due to experimental limitations, the effect of the laser field's spatial dependence on strong-field processes has rarely been investigated. Presented in this work is a theoretical analysis of this spatial dependence including a proposal for an experimentally observable result of the phenomenon. We begin by outlining the elements of the laser field that will vary as a function of position and show their effects on simple free electron trajectories. We …


Comparative Study Of Forward And Diffusely Scattered Light In A Coherently Prepared Ultracold Rubidium Gas, Rocio Gisel Olave Gonzalez Jan 2009

Comparative Study Of Forward And Diffusely Scattered Light In A Coherently Prepared Ultracold Rubidium Gas, Rocio Gisel Olave Gonzalez

Physics Theses & Dissertations

A comparison between forward and diffusely scattered light propagating in a coherently prepared ultracold 87Rb atomic vapor is presented. This research is part of the ongoing effort to characterize the processes, such as diffusion, that contribute to coherence loss in atomic media under conditions of electromagnetically induced transparency, for applications in realistic systems. Toward this end, a magneto optical trap (MOT) of 87Rb has been built, and the atomic vapor sample characterized in terms of atomic density, shape and size, temperature, and optical depth. Next, two co-propagating beams were sent through the sample, to establish an electromagnetically induced …


Light Scattering In Ultracold High Density Rubidium Vapor, Salim Balik Jan 2009

Light Scattering In Ultracold High Density Rubidium Vapor, Salim Balik

Physics Theses & Dissertations

Recent developments in laser cooling and trapping opened the door to a world full of new opportunities for research in atomic, molecular and optical physics as well as condensed matter physics. It became possible to do experiments under conditions that are hard to achieve in condensed matter systems but recently have been observed in atomic systems. Bose Einstein Condensation, the Mott insulator transition, and superfluidity are examples of such achievements. Another considerable interest to both condensed matter and atomic physics is Anderson localization of light. The localization phenomenon is named after P. W. Anderson who suggested the possibility of localization …