Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

PDF

Physics and Engineering Faculty Publications

Series

2022

Articles 1 - 2 of 2

Full-Text Articles in Physics

Developing Optical Devices And Projects For Teaching Engineering, Nathan D. Lemke, John Mccauley, Tristan E. Noble, Grace Riermann, Ellesa St. George, Nathan C. Lindquist, Keith R. Stein, Karen Irene Rogers Aug 2022

Developing Optical Devices And Projects For Teaching Engineering, Nathan D. Lemke, John Mccauley, Tristan E. Noble, Grace Riermann, Ellesa St. George, Nathan C. Lindquist, Keith R. Stein, Karen Irene Rogers

Physics and Engineering Faculty Publications

We are creating a suite of tools and techniques based on optics to be used for teaching a variety of engineering topics. Each tool is intended for non-expert use and without the need for high-end equipment such as vibration-free optical tables. Here we report progress on three such tools: image-plane digital holography for measuring mechanical deformation; schlieren imaging of convective flows using a smart phone; and a simple optical communication protocol using LabVIEW. We will present the designs of the tools and preliminary results from teaching engineering labs and projects with these tools. Specific courses impacted to date include Fluid …


Measurement Of Optical Rubidium Clock Frequency Spanning 65 Days, Nathan D. Lemke, Kyle W. Martin, River Beard, Benjamin K. Stuhl, Andrew J. Metcalf, John D. Elgin Mar 2022

Measurement Of Optical Rubidium Clock Frequency Spanning 65 Days, Nathan D. Lemke, Kyle W. Martin, River Beard, Benjamin K. Stuhl, Andrew J. Metcalf, John D. Elgin

Physics and Engineering Faculty Publications

Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4 x 10-15, a 10 day Allan deviation less than 5 x …