Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

X-Ray Spectroscopy Of Nio And Nanodiamond At Ssrl, Jackson Earl Jan 2018

X-Ray Spectroscopy Of Nio And Nanodiamond At Ssrl, Jackson Earl

STAR Program Research Presentations

The first aspect of this research project focuses on investigating the surface chemistry of high pressure high temperature (HPHT) nanodiamond by using X-ray spectroscopy techniques at the Stanford Synchrotron Radiation Lightsource (SSRL). HPHT nanodiamond is being examined as a biosensing tool for electric field detection based on the fluorescent nitrogen vacancy center hosted within diamond. With use of the transition edge spectrometer (TES), a state-of-the-art X-ray fluorescence detector, we are able to probe the surface and bulk properties of diamond. Preliminary work using density functional theory (DFT) has been done, offering insight into ground state energies and electronic structure. DFT …


Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou Aug 2015

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou

STAR Program Research Presentations

Metal organic frameworks (MOFs) are synthetic materials made of a cage-like lattice of metal nodes connected by organic linkers. The pores between the nodes define the characteristics of the material. A MOF, MIL-101, has shown great capacity in the adsorption of carbon dioxide and methane, as well as in hydrogenation catalysis with palladium. While there has been success in synthesizing MIL-101 and other MOFs, the mechanistic details behind their assembly remain unknown. Understanding the synthesis mechanism is necessary to understand the kinetics involved and be able to produce this useful material on an industrial scale. Using MIL-101 as a prototypical …


Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter Aug 2014

Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter

STAR Program Research Presentations

NASA’s Cold Atom Lab (CAL) is a multi-user facility designed to study ultra-cold quantum gases in the microgravity environment of the International Space Station (ISS). One of the main goals of CAL is to explore the unknown territory of extremely low temperatures—possibly as low as the picokelvin range!—where new and fascinating quantum phenomena can be observed. At such temperatures matter stops behaving as particles and instead becomes macroscopic matter waves. CAL will be remotely controlled to perform a multitude of experiments and is scheduled to launch in 2016. In order to anticipate problems that might occur during and post-launch, including …


A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle Aug 2014

A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle

STAR Program Research Presentations

One of the current programs at SLAC National Accelerator Laboratory is the Linac Coherent Light Source, or LCLS. Using the existing hardware of the last third of their linear accelerator (or “linac”), SLAC has created one of the most energetic X-ray free electron lasers (or “FEL”). Since 2009, LCLS has used this FEL to perform a wide range of experiments across all sciences, most notably ultrafast filming at the molecular scale. As requests for beam-time with this laser increases, SLAC is purposing a linac upgrade to better match this demand. This upgrade, named LCLS-II, will replace existing copper radio frequency …


Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2014

Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Superamphiphobic surfaces strongly repel both water and oils. In this work, aluminum coupons are processed by sanding with various grit of sand paper to impart microscale roughness. Subsequent submersion of the aluminum substrate in boiling water grows nanoscale grass-like structures. The oxide layer of Al is slightly soluble in water. During a fast diffusion/equilibrium, Al2O3 nanograss grows on the surface. A low energy coating is then deposited on the surface. The micro and nanoscale features create re-entrant structures that trap air enabling contact liquid to be in a Cassie-Baxter state. Superamphiphobicity of the samples were confirmed by …


Characterization Of Polarized Synchrotron Light, Britny N. Delp, Jeff Corbett Jan 2014

Characterization Of Polarized Synchrotron Light, Britny N. Delp, Jeff Corbett

STAR Program Research Presentations

The Stanford Synchrotron Radiation Light accelerates electrons around a 234-meter circumference ring at relativistic speeds. The x-ray radiation produced by this process is used in many fields of science ranging from materials science to medicine.

This project seeks to measure the polarization of the 532 nanometer wavelength component in the visible light beam emitted from the SPEAR-3 synchrotron as a function of vertical position. The beam was focused through a lens, then passed through a 532 nm band pass filter and a polarizer mounted on a rotating stand. The beam power was measured as a function of vertical position and …


Breaking Peroxy Bonds In H20 Ice Doped With H202 To Create Positive Hole Charge Carriers., Corey C. Stockburger Aug 2013

Breaking Peroxy Bonds In H20 Ice Doped With H202 To Create Positive Hole Charge Carriers., Corey C. Stockburger

STAR Program Research Presentations

Using stress-activated electric conductivity in water ice doped with hydrogen peroxide as a model for stress-activated electric conductivity of igneous and high-grade metamorphic rocks due to the presence of peroxy defects, which when broken, createpositive-hole charge carriers. Blocks of pure H2O ice and H2O2–doped H2O ices, frozen at –20°C, will be stressed with piezo electric transducers(pzt) at one end to generate stress-activated electric currents flowing down the stress gradient. Pure H2O ice should produce no current or a small insignificant amount during rapid deformation or fracture. Stressing H2O2-doped H2O ices, however, should lead to 100-1000 times higher currents. These stress-activated …


The Standard New Astronomy Cryostat For Sofia: A Design For Cryogen-Free Infrared Astronomy, Carey F. Scott, Jeffrey Van Cleve, Eric Burgh, Earl T. Daley, Ali Kashani, Zaheer Ali Aug 2013

The Standard New Astronomy Cryostat For Sofia: A Design For Cryogen-Free Infrared Astronomy, Carey F. Scott, Jeffrey Van Cleve, Eric Burgh, Earl T. Daley, Ali Kashani, Zaheer Ali

STAR Program Research Presentations

Astronomy at infrared wavelengths requires optical instruments that operate at low temperatures, which is typically done using liquid cryogens such as nitrogen and helium. These cryogens are costly and limit the operational time of the science instrument. The Standard New Astronomy Cryostat for SOFIA (SNACS) will provide a design for a helium cryocooler-cooled cryostat that meets the stringent airworthiness requirements of the Stratospheric Observatory for Infrared Astronomy (SOFIA) and can be used by future instrument builders to reduce the cost and risk of their instrument design and development. The SNACS dewar will provide approximately 3.4 x 10-1 cubic meters …


Leds And Astronomy, Britny N. Delp, Stephen M. Pompea Aug 2012

Leds And Astronomy, Britny N. Delp, Stephen M. Pompea

STAR Program Research Presentations

Using a Czerny-Turner spectrometer, 45 different types of outdoor lights were categorized. These spectra were used to determine how useful the light is to human eyes and how dark skies friendly these lights are. Dark skies friendly lighting means that little to no light shines above a right angle to the light, and should emit as little as possible below 500nm (green) wavelengths. The short wavelengths present a problem to astronomers in the form of Rayleigh scattering. The following criterion were used in selecting the best source for urban and rural lighting: color rendition measured by color rendering index (CRI), …


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.


Generation Of Mid-Ir Wavelengths, Deborah Robinson, Robert Hartsock, Kelly Gaffney Jan 2011

Generation Of Mid-Ir Wavelengths, Deborah Robinson, Robert Hartsock, Kelly Gaffney

STAR Program Research Presentations

Generation of mid-IR wavelengths

Deborah Robinson, Robert Hartsock, and Kelly Gaffney

Abstract

Research to determine basic molecular properties utilizing pump/probe experiments is an on going effort at SLAC. Here we have been given the task to generate mid-IR laser pulses and commission a mid-IR detector for said experiments and research. The mid-IR pulses will be used to probe the changes in molecular properties induced by exciting the electrons in molecules with visible pump pulses. In order to accomplish this, an optical parametric amplifier (OPA) has been set-up and aligned. The pump beam for the OPA is a 40 femtosecond 800nm …