Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick Dec 2012

First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick

Posters

As the impetus for extended observational measurements throughout the middle atmosphere has increased1 , the limits of previous instrumentation need to be pushed. The Rayleigh lidar group at the Atmospheric Lidar Observatory (ALO) at Utah State University has pushed such limits on existing Rayleigh scatter lidar technology and, through major upgrades to the previous lidar system, has been able to gather temperature measurements in the upper mesosphere and lower thermosphere from approximately 70P109 km. A data campaign with the new system was conducted around the annual temperature minimum, centered on late June 2012, in this region. The temperatures from this …


Multiple Peaks In Saber Mesospheric Oh Emission Altitude Profiles, Jordan Rozum, Gene A. Ware, Doran J. Baker, Martin G. Wlynczak, James M. Russell Dec 2012

Multiple Peaks In Saber Mesospheric Oh Emission Altitude Profiles, Jordan Rozum, Gene A. Ware, Doran J. Baker, Martin G. Wlynczak, James M. Russell

Browse All Undergraduate research

No abstract provided.


Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Jun 2012

Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The Rayleigh-Scatter lidar system at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently going through a series of upgrades to significantly improve its observational abilities. A specific objective of these upgrades is to expand the altitude range over which backscattered photons can be collected. A second objective is to increase the sensitivity of the instrument to be able to analyze the raw data at finer temporal and/or spatial resolutions. By measuring relative densities, the system will be able to produce absolute temperatures and relative density perturbations, which illustrate gravity wave structures. Gravity wave studies will significantly …


Assessment Of Gravity Wave Momentum Flux Measurement Capabilities By Meteor Radars Having Different Transmitter Power And Antenna Configurations, D. C. Fritts, D. Janches, W. K. Hocking, Michael J. Taylor May 2012

Assessment Of Gravity Wave Momentum Flux Measurement Capabilities By Meteor Radars Having Different Transmitter Power And Antenna Configurations, D. C. Fritts, D. Janches, W. K. Hocking, Michael J. Taylor

All Physics Faculty Publications

Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8°S) and on King George Island in the Antarctic (62.1°S) and conventional meteor radars at Socorro, New Mexico (34.1°N, 106.9°W), Bear Lake Observatory, Utah (∼41.9°N, 111.4°W), and Yellowknife, Canada (62.5°N, 114.3°W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven …


Comparison Of Saber Oh Measurements To Rocket Photometry Data, Jordan Rozum, Gene A. Ware, Doran J. Baker May 2012

Comparison Of Saber Oh Measurements To Rocket Photometry Data, Jordan Rozum, Gene A. Ware, Doran J. Baker

Browse All Undergraduate research

In 2002, the Sounding of the Atmosphere us- ing Broadband Emission Radiometry (SABER) instru- ment aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite went online and has since been providing radiometric data concern- ing the mesosphere and lower thermosphere/ionosphere (MLTI) region of the atmosphere. Researchers at the Utah State University NASA Space Grant Consortium have been tasked with validating measurements of the hydroxyl airglow volume emission rates (VER) taken by SABER. To this end, we compare SABER measurements of the altitude distribution of hydroxyl airglow to mea- surements taken by photometers aboard rockets launched between 1961 and 1986 …


Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Apr 2012

Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The mesosphere is the most unexplored region of the atmosphere. Its altitude range of 50-85 km lies in between the reaches of data collecting instruments like weather balloons and satellites. For this reason, remote sensing systems, such as lidar, which are able to employ ground-based instruments to make extensive measurements in this difficult to detect region. The Rayleigh-scatter lidar at USU is currently being redeveloped to be the most powerful and sensitive of its kind. This type of lidar exploits light and particle interactions, like those that account for the blue color of the sky, to make relative density and …