Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Simultaneous, Collocated Rayleigh And Sodium Lidar Temperature Comparison, Leda Sox, Vincent B. Wickwar, Tao Yuan, Neal Criddle Jun 2016

Simultaneous, Collocated Rayleigh And Sodium Lidar Temperature Comparison, Leda Sox, Vincent B. Wickwar, Tao Yuan, Neal Criddle

Posters

There are relatively few instruments that have the capabilities to make near continuous measurements of the mesosphere-lower-thermosphere (MLT) region. Rayleigh-scatter (RS) and resonance lidars, particularly sodium (Na) resonance lidar, have been the two dominant ground-based techniques for acquiring mesosphere and MLT vertical temperature profiles, respectively, for more than two decades. With these measurements, the dynamics and long-term temperature trends of the MLT region can be studied. For the first time, we will present simultaneous, night-time averaged temperatures acquired from the same observational site, on the campus of Utah State University (USU), using these two lidar techniques. This comparison is also …


Obtaining Continuous Observations From The Upper Stratosphere To The Lower Thermosphere Using The Alo-Usu Rayleigh-Scatter Lidar., Jonathan L. Price, Vincent B. Wickwar, Leda Sox, Matthew T. Emerick, Joshua P. Herron, Shayli Elliott, Bryant Ward, Benjamin Lovelady Jun 2016

Obtaining Continuous Observations From The Upper Stratosphere To The Lower Thermosphere Using The Alo-Usu Rayleigh-Scatter Lidar., Jonathan L. Price, Vincent B. Wickwar, Leda Sox, Matthew T. Emerick, Joshua P. Herron, Shayli Elliott, Bryant Ward, Benjamin Lovelady

Posters

The Rayleigh-scatter lidar at the Atmospheric Lidar Observatory at Utah State University (ALO-USU; 41.74° N, 111.81° W) started observations in 1993. In 2012 the original lidar system was upgraded with an array of larger mirrors and two lasers to enable observations of the upper mesosphere and lower thermosphere from 70 km to about 115 km in altitude. (Continued refinement should provide data to above 120 km.) Recently, the original system was reconfigured [Elliott et al., 2016] to again observe the lower mesosphere between 40 km and 90 km. Initial data collected by these two parts of the Rayleigh system have …


Seasonal Temperatures From The Upper Mesosphere To The Lower Thermosphere Obtained With The Large, Alo-Usu, Rayleigh Lidar, Vincent B. Wickwar, Leda Sox, Matthew T. Emerick, Joshua P. Herron Jun 2016

Seasonal Temperatures From The Upper Mesosphere To The Lower Thermosphere Obtained With The Large, Alo-Usu, Rayleigh Lidar, Vincent B. Wickwar, Leda Sox, Matthew T. Emerick, Joshua P. Herron

Posters

Observations have been made with the large, Rayleigh-scatter lidar at the Atmospheric Lidar Observatory at Utah State University (ALO-USU; 41.74° N, 111.81° W) from summer 2014 to summer 2015. During this first operational year, the lidar acquired nearly 100 nights of observations between 70 and 115 km altitude, i.e., from the upper mesosphere, through the mesopause, and into the lower thermosphere. This was possible because of the large 4.9 m2 collecting area of the mirrors and the 42 W of 532 nm emission at 30 Hz. These two factors produce a figure of merit, the power-aperture-product, of 206 Wm2, making …


Reestablishing Observations Throughout The Mesosphere With The Alo-Usu Rayleigh-Scatter Lidar, Shayli Elliott, Bryant Ward, Benjamin Lovelady, Jessica Gardiner, Lucas Priskos, Matthew T. Emerick, Vincent B. Wickwar Jun 2016

Reestablishing Observations Throughout The Mesosphere With The Alo-Usu Rayleigh-Scatter Lidar, Shayli Elliott, Bryant Ward, Benjamin Lovelady, Jessica Gardiner, Lucas Priskos, Matthew T. Emerick, Vincent B. Wickwar

Posters

In the last few years, the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory at Utah State University (ALO-USU; 41.74° N, 111.81° W) has been upgraded to extend observations from 70 km up to 115 km. This project describes a student project to build and use a complementary Rayleigh-scatter lidar to go from 40 to 90 km, from the upper stratosphere to the upper mesosphere. At the upper end, this new lidar overlaps with the high-altitude lidar. This was done in a period of just over two months. This lidar shares the same lasers, but introduces a 44-cm mirror and a …


Searching For Troposphere-Mesosphere Connections Using The Alo-Usu Rayleigh-Scatter Lidar, David K. Moser, Vincent B. Wickwar, Joshua P. Herron Jun 2016

Searching For Troposphere-Mesosphere Connections Using The Alo-Usu Rayleigh-Scatter Lidar, David K. Moser, Vincent B. Wickwar, Joshua P. Herron

Posters

The paucity of whole-atmosphere data introduces significant challenges that hinder the study of atmospheric couplings. The mesosphere in particular is a low-information void between the lower and upper atmosphere, which may prevent us from a complete realization of vertical interactions. The Rayleighscatter lidar at Utah State University’s Atmospheric Lidar Observatory (ALO-USU; 41.74° N, 111.81° W), operated with little interruption from 1993 to 2004, providing a valuable temporal and spatial (45 – 90 km) resource in this realm. When studied alongside a multitude of other atmospheric data sources, possible unforeseen connections or insights may result. In this study, an adaptive fit …


Seasonal Variations Of Relative Neutral Densities Between 45 And 90 Km Determined From Usu Rayleigh Lidar Observations, David Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron Jun 2014

Seasonal Variations Of Relative Neutral Densities Between 45 And 90 Km Determined From Usu Rayleigh Lidar Observations, David Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron

Posters

A Rayleigh-scatter lidar operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W), part of Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected extensive data between 1993 and 2004. From the Rayleigh lidar photon-count profiles, relative densities were determined throughout the mesosphere, from 45 to 90 km. Using these relative densities three climatologies were derived, each using a different density normalization at 45 km. The first normalized the relative densities to a constant; the second to the NRL-MSISe00 empirical model which has a strong annual component; and the third to the CPC analyses …


Extremely Sensitive Rayleigh-Scatter Lidar At Usu, Vincent B. Wickwar, Leda Sox, David Barton, Matthew T. Emerick Jun 2014

Extremely Sensitive Rayleigh-Scatter Lidar At Usu, Vincent B. Wickwar, Leda Sox, David Barton, Matthew T. Emerick

Posters

Rayleigh lidar opened a portion of the atmosphere, from 30 to 90 km, to ground-based observations. Rayleigh-scatter observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 between 45 and 90 km, creating a very dense data set consisting of ~5000 hours of observations carried out over ~900 nights. The lidar had a mirror of area 0.15 m2 and a frequency-doubled Nd:YAG laser operating at 532 nm at 30 Hz at ~21 W, giving a power-aperture product (PAP) of ~3.1 Wm2.


Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick Dec 2013

Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick

Posters

Rayleigh lidar opened a portion of the atmosphere, from 30 to 90 km, to ground-based observations. Rayleigh-scatter observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 between 45 and 90 km. The lidar consisted of a 0.44-m diameter mirror, a frequency-doubled Nd:YAG laser opera'ng at 532-nm at 30- Hz at either 18- or 24-W, giving power- aperture products (PAPs) of 2.7- or 3.6- Wm2, respec'vely, and one detector channel. An example of what was accomplished with this system is shown as part of Fig. 1. The temperature climatology was based on ~5000 hours …


Rayleigh Lidar Temperature Studies In The Upper Mesosphere And Lower Thermosphere, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Matthew T. Emerick Jun 2013

Rayleigh Lidar Temperature Studies In The Upper Mesosphere And Lower Thermosphere, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Matthew T. Emerick

Posters

Rayleigh lidar technology opened the middle atmosphere (from 30–90 km) to ground-based observations. The upgraded system at the Atmospheric Lidar Observatory (ALO) on the campus of Utah State University (41.74, 111.81) has shown that these ground-based observations can be extended to 109 km, with the goal of reaching 120 km. The resultant study of short and long-term temperature trends, using Rayleigh lidar, contributes immensely to the overall understanding of the properties and dominant physical processes in the middle atmosphere and Mesosphere-Lower Thermosphere (MLT) region. Temperature variations on short time scales, from minutes to days, give insight into the effects of …


First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick Dec 2012

First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick

Posters

As the impetus for extended observational measurements throughout the middle atmosphere has increased1 , the limits of previous instrumentation need to be pushed. The Rayleigh lidar group at the Atmospheric Lidar Observatory (ALO) at Utah State University has pushed such limits on existing Rayleigh scatter lidar technology and, through major upgrades to the previous lidar system, has been able to gather temperature measurements in the upper mesosphere and lower thermosphere from approximately 70P109 km. A data campaign with the new system was conducted around the annual temperature minimum, centered on late June 2012, in this region. The temperatures from this …


The World's Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, V. B. Wickwar, J P. Herron, Marcus J. Bingham, Lance W. Peterson Jul 2011

The World's Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, V. B. Wickwar, J P. Herron, Marcus J. Bingham, Lance W. Peterson

Posters

No abstract provided.


Rayleigh-Lidar Observations Of Mesospheric Instabilities, Gabriel C. Taylor, Durga N. Kafle, Vincent B. Wickwar Apr 2009

Rayleigh-Lidar Observations Of Mesospheric Instabilities, Gabriel C. Taylor, Durga N. Kafle, Vincent B. Wickwar

Posters

From 1993 to 2004 the Utah State University Rayleigh lidar, known as the USU green laser, collected 900 nights of data from the mesosphere (45-90 km). From these observations profiles of relative neutral densities and absolute temperatures were derived. Usually, the atmosphere is horizontally stratified with a balance between gravitational and pressure forces. When this balance is perturbed, it leads to the generation of buoyancy or “gravity” waves. An example of these is clear air turbulence, which can have dramatic effects on airplanes. As these waves propagate upward, the decrease in atmospheric density and conservation of energy combine to give …


Large-Amplitude Temperature Waves In The Upper Atmosphere, Jarron Lembke, Vincent B. Wickwar Apr 2008

Large-Amplitude Temperature Waves In The Upper Atmosphere, Jarron Lembke, Vincent B. Wickwar

Posters

Recent LIDAR research at USU found a noctilucent cloud (NLC) near the minimum of a large-amplitude temperature wave in the upper mesosphere. Such a large-amplitude wave had not been seen previously. Initial analysis suggested that this wave might be related to the diurnal tide, but greatly amplified. This research set out to learn whether these waves are a common feature. Large waves or temperature “bumps” exceeding 10 K were found in more than half the observations. A later stage will be to see if they are linked to the tides.


Rayleigh-Lidar Observations Of Mesospheric Mid-Latitude Density Climatology Above Utah State University, Eric M. Lundell, Vincent B. Wickwar Dec 2004

Rayleigh-Lidar Observations Of Mesospheric Mid-Latitude Density Climatology Above Utah State University, Eric M. Lundell, Vincent B. Wickwar

Posters

Data from Rayleigh lidars have been used extensively to derive temperatures in the mesospheric region of the atmosphere. However, these data have not been used extensively in a similar way to derive neutral densities. We report on one such mid-latitude, density climatology between 45 and ~90 km, based on nearly 600 good nights of observations carried out since 1993 at the Atmospheric Lidar Observatory (ALO) at Utah State University (41.7°N 111.8°W). They produce relative density profiles that are then normalized at 45 km to an empirical model, in this case the MSISe00 model. Despite this normalization, significant differences are found …


An Earlier Lidar Observation Of A Noctilucent Cloud Above Logan, Utah (41.7°N), Joshua P. Herron, Vincent B. Wickwar Sep 2004

An Earlier Lidar Observation Of A Noctilucent Cloud Above Logan, Utah (41.7°N), Joshua P. Herron, Vincent B. Wickwar

Posters

The Atmospheric Lidar Observatory (ALO) Rayleigh-scatter lidar has been operated for 11 years on the Utah State University (USU) campus (41.7o N 111.8o W). During the morning of 22 June 1995 a noctilucent cloud (NLC) was observed with the lidar well away from the twilight periods when NLCs are visible. It lasted for approximately one hour. This observation and a second in 1999 [Wickwar et al., 2002] are very significant because they show the penetration of NLCs equatorward of 50°, which may have important implications for global change. Temperature profiles calculated at hourly intervals were at least 20 …


Atmospheric Lidar Observatory (Alo) Ten-Year Mesospheric Temperature Climatology, Joshua P. Herron, Vincent B. Wickwar Jun 2004

Atmospheric Lidar Observatory (Alo) Ten-Year Mesospheric Temperature Climatology, Joshua P. Herron, Vincent B. Wickwar

Posters

The Rayleigh-scatter lidar at the Atmospheric Lidar Observatory (ALO) on the Utah State University (USU) (41.7°N, 111.8°W) campus has been in operation since 1993. The temperature database now contains over ten years of Rayleigh-scatter temperatures. A multi-year temperature climatology has been calculated from these observations along with the RMS and interannual variability. These temperatures and the climatology are currently being used in a number of mesospheric studies, including mesospheric inversion layers, tides, planetary waves, cyclical variations, trends, longitudinal comparisons, and validation studies.