Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Physics

Dartmouth College

Articles 1 - 7 of 7

Full-Text Articles in Physics

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla Apr 2023

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla

Dartmouth College Ph.D Dissertations

The Lambda-cold dark matter (LCDM) model has become the standard model of cosmology because of its ability to reproduce a vast array of cosmological observations, from the earliest moments of our Universe, to the current period of accelerated expansion, which it does with great accuracy. However, the success of this model only distracts from its inherent flaws and ambiguities. LCDM is purely phenomenological, providing no physical explanation for the nature of dark matter, responsible for the formation and evolution of large-scale structure, and giving an inconclusive explanation for dark energy, which drives the current period of accelerated expansion.

Furthermore, cracks …


Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura Feb 2015

Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura

Dartmouth Scholarship

We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that a …


Discontinuities And Alfvenic Fluctuations In The Solar Wind, G. Paschmann, S. Haaland, B. Sonnerup, T. Knetter May 2013

Discontinuities And Alfvenic Fluctuations In The Solar Wind, G. Paschmann, S. Haaland, B. Sonnerup, T. Knetter

Dartmouth Scholarship

We examine the Alfvenicity of a set of 188 solar wind directional discontinuities (DDs) identified in the Cluster data from 2003 by Knetter (2005), with the objective of separating rotational discontinuities (RDs) from tangential ones (TDs). The DDs occurred over the full range of solar wind velocities and magnetic shear angles. By performing the Walen test in the de Hoffmann–Teller (HT) frame, we show that 77 of the 127 crossings for which a good HT frame was found had plasma flow speeds exceeding 80 % of the Alfven speed at an average angular deviation of 7.7◦; 33 cases had speeds …


First Results From Ideal 2-D Mhd Reconstruction: Magnetopause Reconnection Event Seen By Cluster, W. L. Teh, B. U. O. Sonnerup Jan 2008

First Results From Ideal 2-D Mhd Reconstruction: Magnetopause Reconnection Event Seen By Cluster, W. L. Teh, B. U. O. Sonnerup

Dartmouth Scholarship

We have applied a new reconstruction method (Sonnerup and Teh, 2008), based on the ideal single-fluid MHD equations in a steady-state, two-dimensional geometry, to a reconnection event observed by the Cluster-3 (C3) space- craft on 5 July 2001, 06:23 UT, at the dawn-side Northern- Hemisphere magnetopause. The event has been previously studied by use of Grad-Shafranov (GS) reconstruction, per- formed in the deHoffmann-Teller frame, and using the as- sumption that the flow effects were either negligible or the flow was aligned with the magnetic field. Our new method allows the reconstruction to be performed in the frame of reference moving …


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Jul 1999

A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

A quantum field theory warm inflation model is presented that solves the horizon and flatness problems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor trajectories that begin in a radiation dominated regime, enter an inflationary regime, and then smoothly exit back into a radiation dominated regime, with non-negligible radiation throughout the evolution.


Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Nov 1998

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium …