Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Series

2020

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 63

Full-Text Articles in Physics

The Nanograv 12.5 Yr Data Set: Observations And Narrowband Timing Of 47 Millisecond Pulsars, Md F. Alam, Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Keith E. Bohler, Keeisi Caballero, Richard S. Camuccio, Yhamil Garcia Dec 2020

The Nanograv 12.5 Yr Data Set: Observations And Narrowband Timing Of 47 Millisecond Pulsars, Md F. Alam, Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Keith E. Bohler, Keeisi Caballero, Richard S. Camuccio, Yhamil Garcia

Physics and Astronomy Faculty Publications and Presentations

We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on "narrowband" analysis, in which many TOAs are calculated within narrow radio-frequency …


First Results On Protodune-Sp Liquid Argon Time Projection Chamber Performance From A Beam Test At The Cern Neutrino Platform, B. Abi, A. Abed Abud, R. Acciarri, M. A. Acero, G. Adamowski, D. Adams, P. Adrien, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, S. Andringa, A. Ankowski, M. Antonova, Roberto Petti, Et. Al. Dec 2020

First Results On Protodune-Sp Liquid Argon Time Projection Chamber Performance From A Beam Test At The Cern Neutrino Platform, B. Abi, A. Abed Abud, R. Acciarri, M. A. Acero, G. Adamowski, D. Adams, P. Adrien, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, S. Andringa, A. Ankowski, M. Antonova, Roberto Petti, Et. Al.

Faculty Publications

The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 × 6.1 × 7.0 m3 . It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/�� to 7 GeV/��. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the …


Herschel Gould Belt Survey Observations Of Dense Cores In The Cepheus Flare Clouds, James Di Francesco, Jared Keown, Cassandra Fallscheer, Philippe André, Bilal Ladjelate, Vera Könyves, Alexander Men'shchikov, Shaun Stephens-Whale, Quang Nguyen-Luong, Peter Martin, Sarah Sadavoy, Stefano Pezzuto, Eleonora Fiorellino, Milena Benedettini, Nicola Schneider, Sylvain Bontemps, Doris Arzoumanian, Pedro Palmeirim, Jason M. Kirk, Derek Ward-Thompson Dec 2020

Herschel Gould Belt Survey Observations Of Dense Cores In The Cepheus Flare Clouds, James Di Francesco, Jared Keown, Cassandra Fallscheer, Philippe André, Bilal Ladjelate, Vera Könyves, Alexander Men'shchikov, Shaun Stephens-Whale, Quang Nguyen-Luong, Peter Martin, Sarah Sadavoy, Stefano Pezzuto, Eleonora Fiorellino, Milena Benedettini, Nicola Schneider, Sylvain Bontemps, Doris Arzoumanian, Pedro Palmeirim, Jason M. Kirk, Derek Ward-Thompson

All Faculty Scholarship for the College of the Sciences

We present Herschel SPIRE and PACS maps of the Cepheus Flare clouds L1157, L1172, L1228, L1241, and L1251, observed by the Herschel Gould Belt Survey of nearby star-forming molecular clouds. Through modified blackbody fits to the SPIRE and PACS data, we determine typical cloud column densities of (0.5–1.0) × 1021 cm−2 and typical cloud temperatures of 14–15 K. Using the getsources identification algorithm, we extract 832 dense cores from the SPIRE and PACS data at 160–500 μm. From placement in a mass versus size diagram, we consider 303 to be candidate prestellar cores, and 178 of these …


Evidence For Electron Energization Accompanying Spontaneous Formation Of Ion Acceleration Regions In Expanding Plasmas, Evan M. Aguirre, Rikard Bodin, Neng Yin, Timothy N. Good, Earl E. Scime Dec 2020

Evidence For Electron Energization Accompanying Spontaneous Formation Of Ion Acceleration Regions In Expanding Plasmas, Evan M. Aguirre, Rikard Bodin, Neng Yin, Timothy N. Good, Earl E. Scime

Physics and Astronomy Faculty Publications

We report experiments conducted in an expanding argon plasma generated in the inductive mode of a helicon source in the Hot hELIcon eXperiment–Large Experiment on Instabilities and Anisotropies facility. As the neutral gas pressure increases, the supersonic ion acceleration weakens. Increasing neutral pressure also alters the radial profile of electron temperature, density, and plasma potential upstream of the plasma expansion region. Langmuir probe measurements of the electron energy probability function (EEPF) show that heating of electrons at the plasma edge by RF fields diminishes with increasing gas pressure, yielding a plasma with a centrally peaked electron temperature, and flat potential …


Neutrino Interaction Classification With A Convolutional Neural Network In The Dune Far Detector, B. Abi, R. Acciarri, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J.. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, S. Andringa, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernadez, Roberto Petti, Et. Al. Nov 2020

Neutrino Interaction Classification With A Convolutional Neural Network In The Dune Far Detector, B. Abi, R. Acciarri, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J.. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, S. Andringa, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernadez, Roberto Petti, Et. Al.

Faculty Publications

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed …


Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez Nov 2020

Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

Teleseismic, or distant, earthquakes regularly disrupt the operation of ground–based gravitational wave detectors such as Advanced LIGO. Here, we present EQ mode, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differential motion of the interferometer arms with respect to one another, resulting in a reduction of DARM signal at frequencies below 100 mHz. Our method greatly improved the interferometers' capability to remain operational during earthquakes, with ground velocities up to 3.9 μm s−1 rms …


Demonstration Of Dynamic Thermal Compensation For Parametric Instability Suppression In Advanced Ligo, T. Hardwick, V. J. Hamedan, C. Blair, A. C. Green, D. Vander-Hyde Oct 2020

Demonstration Of Dynamic Thermal Compensation For Parametric Instability Suppression In Advanced Ligo, T. Hardwick, V. J. Hamedan, C. Blair, A. C. Green, D. Vander-Hyde

Faculty Publications

Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an …


Long-Baseline Neutrino Oscillation Physics Potential Of The Dune Experiment, B. Abi, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andringa, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernandez, A. Ariga, L. O. Arnold, Roberto Petti, Et. Al. Oct 2020

Long-Baseline Neutrino Oscillation Physics Potential Of The Dune Experiment, B. Abi, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andringa, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernandez, A. Ariga, L. O. Arnold, Roberto Petti, Et. Al.

Faculty Publications

The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ for δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 …


Structural Evolution And Magnetic Properties Of Gd2hf2o7 Nanocrystals: Computational And Experimental Investigations, Madhab Pokhrel, N. Dimakis, Gamage Chamath Dannangoda, Santosh K. Gupta, Karen S. Martirosyan, Yuanbing Mao Oct 2020

Structural Evolution And Magnetic Properties Of Gd2hf2o7 Nanocrystals: Computational And Experimental Investigations, Madhab Pokhrel, N. Dimakis, Gamage Chamath Dannangoda, Santosh K. Gupta, Karen S. Martirosyan, Yuanbing Mao

Physics and Astronomy Faculty Publications and Presentations

Structural evolution in functional materials is a physicochemical phenomenon, which is important from a fundamental study point of view and for its applications in magnetism, catalysis, and nuclear waste immobilization. In this study, we used x-ray diffraction and Raman spectroscopy to examine the Gd2Hf2O7 (GHO) pyrochlore, and we showed that it underwent a thermally induced crystalline phase evolution. Superconducting quantum interference device measurements were carried out on both the weakly ordered pyrochlore and the fully ordered phases. These measurements suggest a weak magnetism for both pyrochlore phases. Spin density calculations showed that the Gd3+ …


Physics For Everyone, Charles Liu, Sarang Gopalakrishnan, Vadim Oganesyan Oct 2020

Physics For Everyone, Charles Liu, Sarang Gopalakrishnan, Vadim Oganesyan

Open Educational Resources

The online educational resource Physics For Everyone is the scaffolding for a 3 contact hour, 3 credit general education course that will be offered for the first time at the CUNY College of Staten Island in the spring semester of 2021. This work has been generously supported by New America’s PIT-UN (Public Interest Technology University Network) challenge grant program, and is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This slide deck provides the outline for the semester-long course. Each week’s lecture topics, with key points to be covered, are highlighted in two slides, which also list writing prompts, …


Using Saoimage Ds9 & Hubble Space Telescope Data To Identify Globular Clusters In Ic 219, Emily Spicer, Alice Jacques, Benne Holwerda Oct 2020

Using Saoimage Ds9 & Hubble Space Telescope Data To Identify Globular Clusters In Ic 219, Emily Spicer, Alice Jacques, Benne Holwerda

Undergraduate Research Events

Globular clusters are tightly bound spherical clusters of stars located within the halo of elliptical and spiral galaxies. They are among the oldest stars found in a galaxy, and their presence and abundance in a galaxy’s halo offer insight on the age, composition, and formation of the galaxy.1 I used a Hubble Space Telescope (HST) image and SAOImage DS9, a powerful imaging tool used to analyze astronomical data, to identify the size and locate the position of globular cluster (GC) candidates in IC 219.


Gravitational-Wave Constraints On The Equatorial Ellipticity Of Millisecond Pulsars, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, W. H. Wang Oct 2020

Gravitational-Wave Constraints On The Equatorial Ellipticity Of Millisecond Pulsars, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, W. H. Wang

Physics and Astronomy Faculty Publications and Presentations

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437−4715, PSR J0711−6830, and PSR J0737−3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835−4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time we are able to match (for PSR J0437−4715) or surpass (for PSR J0711−6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10−8 …


Interplay Of Quantum Phase Transition And Flat Band In Hybrid Lattices, Gui-Lei Zhu, Hamidreza Ramezani, Clive Emary, Jin-Hua Gao, Ying Wu, Xin-You Lü Sep 2020

Interplay Of Quantum Phase Transition And Flat Band In Hybrid Lattices, Gui-Lei Zhu, Hamidreza Ramezani, Clive Emary, Jin-Hua Gao, Ying Wu, Xin-You Lü

Physics and Astronomy Faculty Publications and Presentations

We establish a connection between quantum phase transitions (QPTs) and energy band theory in an extended Dicke-Hubbard lattice, where the periodical critical curves modulated by wave number k leads to rich equilibrium dynamics. Interestingly, the chiral-symmetry-protected flat band and the localization that it engenders exclusively occurs in the normal phase and disappears in the superradiant phase. This originates from the QPT induced simultaneous breaking up of the on-site resonance condition and off-site chiral symmetry of the system, which prohibits the destructive interference for obtaining a flat band. Our work offers an approach to identify different phases of the lattice via …


Optical Study Of Pks B1322-110, The Intra-Hour Variable Radio Source, Juan P. Madrid, Artem V. Tuntsov, Mischa Schirmer, Mark A. Walker, Carlos J. Donzelli, Keith W. Bannister, Hayley E. Bignall, Jamie Stevens, Cormac Reynolds, Simon Johnston Sep 2020

Optical Study Of Pks B1322-110, The Intra-Hour Variable Radio Source, Juan P. Madrid, Artem V. Tuntsov, Mischa Schirmer, Mark A. Walker, Carlos J. Donzelli, Keith W. Bannister, Hayley E. Bignall, Jamie Stevens, Cormac Reynolds, Simon Johnston

Physics and Astronomy Faculty Publications and Presentations

Observations with the Australia Telescope Compact Array revealed intra-hour variations in the radio source PKS B1322-110 (Bignall et al. 2019). As part of an optical follow-up, we obtained Gemini Hα and Hα continuum (HαC) images of the PKS B1322-110 field. A robust 19 σ detection of PKS B1322- 110 in the Hα−HαC image prompted us to obtain the first optical spectrum of PKS B1322-110. With the Gemini spectrum we determine that PKS B1322-110 is a flat-spectrum radio quasar at a redshift of z = 3.007 ± 0.002. The apparent flux detected in the Hα filter is likely to originate from …


26 Results Of Hyperbolic Partial Differential Equations In B-Poly Basis, Muhammad I. Bhatti, Emilio Hinojosa Sep 2020

26 Results Of Hyperbolic Partial Differential Equations In B-Poly Basis, Muhammad I. Bhatti, Emilio Hinojosa

Physics and Astronomy Faculty Publications and Presentations

A two-variable process to estimate results of Hyperbolic Partial Differentiation (HPD) equations in a B-Polynomial (B-Poly) bases is established. In the proposed process, a linear product of variable coefficients and B-Polys is manipulated to express the predicted solution of the HPD equation. The variable coefficients of the linear mixture in the results are concluded using Galerkin technique. The HPD equation is converted into a matrix which when inverted provided the unknown coefficients in the linear mixture of the solution. The anticipated solution is constructed from the variable coefficients and B-Poly basis set as a product with initial conditions implemented. Both …


Sensitivity And Performance Of The Advanced Ligo Detectors In The Third Observing Run, A. Buikema, C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. Adhikari, K. E. Ramirez Sep 2020

Sensitivity And Performance Of The Advanced Ligo Detectors In The Third Observing Run, A. Buikema, C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. Adhikari, K. E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of …


Gw190521: A Binary Black Hole Merger With A Total Mass Of 150 M⊙, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny Sep 2020

Gw190521: A Binary Black Hole Merger With A Total Mass Of 150 M⊙, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85+21−14  M⊙ and 66+17−18  M⊙ (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of …


Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny Sep 2020

Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, M ⊙ and M ⊙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65–120 M ⊙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger ( M ⊙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular …


Robust Localized Zero-Energy Modes From Locally Embedded Pt-Symmetric Defects, Fatemeh Mostafavi, Cem Yuce, Omar S. Magana-Loaiza, Henning Schomerus, Hamidreza Ramezani Sep 2020

Robust Localized Zero-Energy Modes From Locally Embedded Pt-Symmetric Defects, Fatemeh Mostafavi, Cem Yuce, Omar S. Magana-Loaiza, Henning Schomerus, Hamidreza Ramezani

Physics and Astronomy Faculty Publications and Presentations

We demonstrate the creation of robust localized zero-energy states that are induced into topologically trivial systems by insertion of a PT-symmetric defect with local gain and loss. A pair of robust localized states induced by the defect turns into zero-energy modes when the gain-loss contrast exceeds a threshold, at which the defect states encounter an exceptional point. Our approach can be used to obtain robust lasing or perfectly absorbing modes in any part of the system.


Induced Ferroelectric Phases In Srtio3 By A Nanocomposite Approach, Erik Enriquez, Qian Li, Pamela Bowlan, Ping Lu, Bruce Zhang, Leigang Li, Haiyan Wang, Antoinette J. Taylor, Dmitry Yarotski, Rohit P. Prasankumar Aug 2020

Induced Ferroelectric Phases In Srtio3 By A Nanocomposite Approach, Erik Enriquez, Qian Li, Pamela Bowlan, Ping Lu, Bruce Zhang, Leigang Li, Haiyan Wang, Antoinette J. Taylor, Dmitry Yarotski, Rohit P. Prasankumar

Physics and Astronomy Faculty Publications and Presentations

Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the …


Modifications To Gravitational Wave Equation From Canonical Quantum Gravity, Andrea Dapor, Klaus Liegener Aug 2020

Modifications To Gravitational Wave Equation From Canonical Quantum Gravity, Andrea Dapor, Klaus Liegener

Faculty Publications

It is expected that the quantum nature of spacetime leaves its imprint in all semiclassical gravitational systems, at least in certain regimes, including gravitational waves. In this paper we investigate such imprints on gravitational waves within a specific framework: space is assumed to be discrete (in the form of a regular cubic lattice), and this discrete geometry is quantised following Dirac's canonical quantisation scheme. The semiclassical behavior is then extracted by promoting the expectation value of the Hamiltonian operator on a semiclassical state to an effective Hamiltonian. Considering a family of semiclassical states representing small tensor perturbations to Minkowski background, …


Diffuse Spectra Model Of Photoluminescence In Carbon Quantum Dots, S. E. Kumekov, N. K. Saitova, Karen S. Martirosyan Aug 2020

Diffuse Spectra Model Of Photoluminescence In Carbon Quantum Dots, S. E. Kumekov, N. K. Saitova, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

The attractive aspect of excitation related to fluorescence nature in carbon quantum dots (CQD) has guided to several assumptions correlated with clusters size distribution, shapes as well as presence of different emissive states. In this study, a dimer–excimer model of photoluminescence (PL) in CQD describing discrete multiple electronic states for the excitation-dependent emission is described. The functional dependence of the characteristic width of the diffuse spectra of PL on the size of a quantum dots are calculated. The effective width of PL spectrum can be tuned from 0.1 to 1 eV.


A Simple Graphical Method For Calculating The Standing Wave Frequencies On A Rectangular Membrane, Joseph D. Romano, Richard H. Price Aug 2020

A Simple Graphical Method For Calculating The Standing Wave Frequencies On A Rectangular Membrane, Joseph D. Romano, Richard H. Price

Physics and Astronomy Faculty Publications and Presentations

In introductory physics courses, simple arguments based on traveling waves on a string are used to relate the frequency of standing waves to boundary conditions, e.g., the fixed ends of the string. Here, we extend that approach to two-dimensional waves such as the oscillations of a rectangular membrane with edges fixed at the boundary. This results in a graphical method that uses only simple geometry and is suitable for explaining two-dimensional standing-wave oscillations to non-science majors, e.g., in a physics of sound and music class.


Adaptive Spline Fitting With Particle Swarm Optimization, Soumya Mohanty, Ethan Fahnestock Aug 2020

Adaptive Spline Fitting With Particle Swarm Optimization, Soumya Mohanty, Ethan Fahnestock

Physics and Astronomy Faculty Publications and Presentations

In fitting data with a spline, finding the optimal placement of knots can significantly improve the quality of the fit. However, the challenging high-dimensional and non-convex optimization problem associated with completely free knot placement has been a major roadblock in using this approach. We present a method that uses particle swarm optimization (PSO) combined with model selection to address this challenge. The problem of overfitting due to knot clustering that accompanies free knot placement is mitigated in this method by explicit regularization, resulting in a significantly improved performance on highly noisy data. The principal design choices available in the method …


Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera Jul 2020

Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera

Physics and Astronomy Faculty Publications and Presentations

We investigate the stability of the magnetic dual chiral density wave (MDCDW) phase of cold and dense QCD against collective low-energy fluctuations of the order parameter. The appearance of additional structures in the system free energy due to the explicit breaking of the rotational and isospin symmetries by the external magnetic field play a crucial role in the analysis. The new structures stiffen the spectrum of the thermal fluctuations in the transverse direction, thereby avoiding the Landau-Peierls instability that affects single-modulated phases at arbitrarily low temperatures. The lack of Landau-Peierls instabilities in the MDCDW phase makes this inhomogeneous phase of …


Simulating The Outer Layers Of Rapidly Rotating Stars, Frank J. Robinson, Joel Tanner, Sarbani Basu Jul 2020

Simulating The Outer Layers Of Rapidly Rotating Stars, Frank J. Robinson, Joel Tanner, Sarbani Basu

Chemistry & Physics Faculty Publications

This paper presents the results of a set of radiative hydrodynamic (RHD) simulations of convection in the near-surface regions of a rapidly rotating star. The simulations use microphysics consistent with stellar models, and include the effects of realistic convection and radiative transfer. We find that the overall effect of rotation is to reduce the strength of turbulence. The combination of rotation and radiative cooling creates a zonal velocity profile in which the motion of fluid parcels near the surface is independent of rotation. Their motion is controlled by the strong up and down flows generated by radiative cooling. The fluid …


Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera Jul 2020

Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera

Physics and Astronomy Faculty Publications and Presentations

We investigate the stability of the magnetic dual chiral density wave (MDCDW) phase of cold and dense QCD against collective low-energy fluctuations of the order parameter. The appearance of additional structures in the system free energy due to the explicit breaking of the rotational and isospin symmetries by the external magnetic field play a crucial role in the analysis. The new structures stiffen the spectrum of the thermal fluctuations in the transverse direction, thereby avoiding the Landau-Peierls instability that affects single-modulated phases at arbitrarily low temperatures. The lack of Landau-Peierls instabilities in the MDCDW phase makes this inhomogeneous phase of …


Astroalign: A Python Module For Astronomical Image Registration, Martin Beroiz, Juan B. Cabral, Bruno Sanchez Jul 2020

Astroalign: A Python Module For Astronomical Image Registration, Martin Beroiz, Juan B. Cabral, Bruno Sanchez

Physics and Astronomy Faculty Publications and Presentations

We present an algorithm implemented in the Astroalign Python module for image registration in astronomy. Our module does not rely on WCS information and instead matches three-point asterisms (triangles) on the images to find the most accurate linear transformation between them. It is especially useful in the context of aligning images prior to stacking or performing difference image analysis. Astroalign can match images of different point-spread functions, seeing, and atmospheric conditions.


Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati Jun 2020

Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

No abstract provided.


Finding Strong Gravitational Lenses In The Desi Decam Legacy Survey, Xiaosheng Huang, Christopher Storfer, V. Ravi, A. Pilon, M. Domingo, D. J. Schlegel, S. Bailey, A. Dey, R. R. Gupta, D. Herrera, S. Juneau, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, E. F. Schlafly, F. Valdes, B. A. Weaver, J. Yang, C. Yèche May 2020

Finding Strong Gravitational Lenses In The Desi Decam Legacy Survey, Xiaosheng Huang, Christopher Storfer, V. Ravi, A. Pilon, M. Domingo, D. J. Schlegel, S. Bailey, A. Dey, R. R. Gupta, D. Herrera, S. Juneau, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, E. F. Schlafly, F. Valdes, B. A. Weaver, J. Yang, C. Yèche

Physics and Astronomy

We perform a semi-automated search for strong gravitational lensing systems in the 9000 deg2 Dark Energy Camera Legacy Survey (DECaLS), part of the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys. The combination of the depth and breadth of these surveys are unparalleled at this time, making them particularly suitable for discovering new strong gravitational lensing systems. We adopt the deep residual neural network architecture developed by Lanusse et al. for the purpose of finding strong lenses in photometric surveys. We compile a training sample that consists of known lensing systems in the Legacy Surveys and the Dark Energy Survey as …