Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

A Model Of So-Called "Zebra" Emissions In Solar Flare Radio Burst Continua, R. A. Treumann, R. Nakamura, W. Baumjohann Sep 2011

A Model Of So-Called "Zebra" Emissions In Solar Flare Radio Burst Continua, R. A. Treumann, R. Nakamura, W. Baumjohann

Dartmouth Scholarship

A simple mechanism for the generation of elec- tromagnetic “Zebra” pattern emissions is proposed. “Zebra” bursts are regularly spaced narrow-band radio emissions on the otherwise broadband radio continuum emitted by the ac- tive solar corona. The mechanism is based on the generation of an ion-ring distribution in a magnetic mirror geometry in the presence of a properly directed field-aligned electric po- tential field. Such ion-rings or ion-conics are well known from magnetospheric observations. Under coronal condi- tions they may become weakly relativistic. In this case the ion-cyclotron maser generates a number of electromagnetic ion-cyclotron harmonics which modulate the electron maser …


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.