Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo Dec 2011

Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo

Faculty Publications

Despite the increasing importance of ruthenium in numerous technological applications, e.g., catalysis and electronic devices, experimental and computational data on its binary alloys are sparse. In particular, data are scant on those binary systems believed to be phase-separating. We performed a comprehensive study of ruthenium binary systems with the 28 transition metals, using high-throughput first-principles calculations. These computations predict novel unsuspected compounds in 7 of the 16 binary systems previously believed to be phase-separating and in two of the three systems reported with only a high-temperature σ phase. They also predict a few unreported compounds in five additional systems and …


Guiding The Experimental Discovery Of Magnesium Alloys, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo Aug 2011

Guiding The Experimental Discovery Of Magnesium Alloys, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo

Faculty Publications

Magnesium alloys are among the lightest structural materials known and are of considerable technological interest. To develop superior magnesium alloys, experimentalists must have a thorough understanding of the concentration-dependent precipitates that form in a given system, and hence, the thermodynamic stability of crystal phases must be determined. This information is often lacking but can be supplied by first-principles methods. Within the high-throughput framework, AFLOW, T = 0 K ground-state predictions are made by scanning a large set of known candidate structures for thermodynamic (formation energy) minima. The following 34 systems are investigated: AlMg, AuMg, CaMg, CdMg, CuMg, FeMg , GeMg, …


Polymer Molded Templates For Nanostructured Amorphous Silicon Photovoltaics, Lei Pei, Amy Balls, Cary Tippets, Jonathan Abbott, Matthew R. Linford, David D. Allred, Richard R. Vanfleet, Robert C. Davis, Jian Hu, Arun Madan Apr 2011

Polymer Molded Templates For Nanostructured Amorphous Silicon Photovoltaics, Lei Pei, Amy Balls, Cary Tippets, Jonathan Abbott, Matthew R. Linford, David D. Allred, Richard R. Vanfleet, Robert C. Davis, Jian Hu, Arun Madan

Faculty Publications

Here, the authors report the fabrication of transparent polymer templates for nanostructured amorphous silicon photovoltaics using low-cost nanoimprint lithography of polydimethylsiloxane. The template contains a square two-dimensional array of high-aspect-ratio nanoholes (300 nm diameter by 1 µm deep holes) on a 500X500 nm^2 pitch. A 100 nm thick layer of a-Si:H was deposited on the template surface resulting in a periodically nanostructured film. The optical characterization of the nanopatterned film showed lower light transmission at 600-850 nm wavelengths and lower light reflection at 400-650 nm wavelengths, resulting in 20% higher optical absorbance at AM 1.5 spectral irradiance versus a nonpatterned …