Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Improving The Temporal Accuracy Of Turbulence Models And Resolving The Implementation Issues Of Fluid Flow Modeling, Kyle J. Schwiebert Jan 2021

Improving The Temporal Accuracy Of Turbulence Models And Resolving The Implementation Issues Of Fluid Flow Modeling, Kyle J. Schwiebert

Dissertations, Master's Theses and Master's Reports

A sizeable proportion of the work in this thesis focuses on a new turbulence model, dubbed ADC (the approximate deconvolution model with defect correction). The ADC is improved upon using spectral deferred correction, a means of constructing a higher order ODE solver. Since both the ADC and SDC are based on a predictor-corrector approach, SDC is incorporated with essentially no additional computational cost. We will show theoretically and using numerical tests that the new scheme is indeed higher order in time than the original, and that the benefits of defect correction, on which the ADC is based, are preserved.

The …


Power-Law Scaling Of Extreme Dynamics Near Higher-Order Exceptional Points, Q. Zhong, Demetrios N. Christodoulides, M. Khajavikhan, K. G. Makris, Ramy El-Ganainy Feb 2018

Power-Law Scaling Of Extreme Dynamics Near Higher-Order Exceptional Points, Q. Zhong, Demetrios N. Christodoulides, M. Khajavikhan, K. G. Makris, Ramy El-Ganainy

Department of Physics Publications

We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other …


Evaporation Of A Sessile Droplet On A Slope, Mitch Timm Jan 2018

Evaporation Of A Sessile Droplet On A Slope, Mitch Timm

Dissertations, Master's Theses and Master's Reports

We theoretically examine the drying of a stationary liquid droplet on an inclined surface. Both analytical and numerical approaches are considered, while assuming that the evaporation results from a purely diffusive transport of the liquid vapor and that the contact line is a pinned circle. For the purposes of our analytical calculations, we suppose that the effect of gravity relative to the surface tension is weak, i.e. the Bond number (Bo) is small. Then, we express the shape of the drop and the vapor concentration field as perturbation expansions in terms of Bo. When the Bond number is zero, the …


High Accuracy Methods And Regularization Techniques For Fluid Flows And Fluid-Fluid Interaction, Mustafa Aggul Jan 2018

High Accuracy Methods And Regularization Techniques For Fluid Flows And Fluid-Fluid Interaction, Mustafa Aggul

Dissertations, Master's Theses and Master's Reports

This dissertation contains several approaches to resolve irregularity issues of CFD problems, including a decoupling of non-linearly coupled fluid-fluid interaction, due to high Reynolds number. New models present not only regularize the linear systems but also produce high accurate solutions both in space and time. To achieve this goal, methods solve a computationally attractive artificial viscosity approximation of the target problem, and then utilize a correction approach to make it high order accurate. This way, they all allow the usage of legacy code | a frequent requirement in the simulation of fluid flows in complex geometries. In addition, they all …