Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

A Comparative Study On The Rheological Properties Of Upper Convected Maxwell Fluid Along A Permeable Stretched Sheet, Sara I. Abdelsalam, W. Abbas, A. M. Megahed, A. M. Said Nov 2023

A Comparative Study On The Rheological Properties Of Upper Convected Maxwell Fluid Along A Permeable Stretched Sheet, Sara I. Abdelsalam, W. Abbas, A. M. Megahed, A. M. Said

Basic Science Engineering

The objective of this paper is to examine the flow of a non-Newtonian Maxwell fluid induced by a permeable stretching sheet in motion within a porous medium. The research incorporates the Cattaneo-Christov heat flux model to study the heat transfer process. The utilization of the Cattaneo-Christov heat flux approach becomes relevant in scenarios involving materials with high thermal conductivity or during short time intervals. Consequently, the current investigation holds significant importance. It is assumed that the viscosity of the Maxwell fluid changes exponentially as the temperature changes. The modeling of the physical phenomena being investigated takes into account the effects …


The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam Sep 2023

The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam

Basic Science Engineering

No abstract provided.


Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis, Sara I. Abdelsalam, A. M. Alsharif, Y. Abd Elmaboud, A. I. Abdellateef May 2023

Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis, Sara I. Abdelsalam, A. M. Alsharif, Y. Abd Elmaboud, A. I. Abdellateef

Basic Science Engineering

The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the nanoparticles (Fe3O4-TiO2) are of a spherical shape. A strong zeta potential is taken into account and the electroosmotic velocity in the two layers is considered too. The annular microtubes are subjected to an external magnetic field and an electric field. The linked nonlinear …