Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake Apr 2009

Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake

Physics Theses & Dissertations

A partially ionized gas is referred to as either a plasma or a discharge depending on the degree of ionization. The term discharge is usually applied to a weakly ionized gas, i.e. mostly neutrals, where as a plasma usually has a larger degree of ionization. To characterize a discharge the plasma parameters, such as the rotational temperature, vibrational temperature, and electron density, must be determined. Detailed characterization of supersonic flowing discharges is important to many applications in aerospace and aerodynamics. One application is the use of plasma-assisted hydrogen combustion devices to aid in supersonic combustion. In conditions close to the …


Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash Jan 2009

Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to derive the volume viscosity coefficients of a reacting fluid with multiple dissipative processes. The procedure, as in the case of a single dissipative process, yields two dissipative terms in the Navier-Stokes equation: The first is the traditional volume viscosity term, proportional to the dilatational component of the velocity; the second term is proportional to the material time derivative of the pressure gradient. Each dissipative process is assumed to be independent of the others. In a fluid comprising a single constituent with multiple relaxation processes, the relaxation times of the multiple processes are …