Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

PDF

2018

Institution
Keyword
Publication
Publication Type

Articles 1 - 22 of 22

Full-Text Articles in Physics

Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani Nov 2018

Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani

Shared Knowledge Conference

An interferometer or resonator is a device in which optical beams of specific frequencies circulate with minimal losses. These losses are completely compensated by the gain inside a laser resonator. A small perturbation introduced inside the laser can affect its frequency, which in turns becomes a metric of that perturbation. The perturbation is usually caused by an electric or magnetic field, rotation, acceleration, nonlinear index of refraction etc. Tiny changes of optical frequency are monitored by superimposing the laser field and a reference field (from the same laser) on a detector. This technique requires creating a laser in which two …


Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta Nov 2018

Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta

Posters-at-the-Capitol

Polymer nanocomposites are significant for modern and future technologies (aerospace, defense, water purification etc.) due to their tailored properties, lightweight and low cost. However, ‘forward’ engineered polymer (host matrix) composites with smaller size nanoparticles (guest) providing desired properties targeting specific applications remains a challenging task as they depend largely on nanoparticles size, shape and loading (volume fraction). This study develops polymer nanocomposites impregnated with ‘organic-inorganic’ silsesquioxane nanoparticles and graphene nanoribbons, and investigates microscopic structure and dynamics of interfacial layer to predict macroscale properties. The nanocomposites consist of poly(2-vinylpyridine) (P2VP) polymer (segment ~5nm) with spherical silsesquioxane nanoparticles (diameter ~2-5nm) and planar …


Rainbow Horizons: High Altitude Visible Spectrum Analysis, F Gonzalez, N Schragal, E Leiser, A Raney, J Seese Oct 2018

Rainbow Horizons: High Altitude Visible Spectrum Analysis, F Gonzalez, N Schragal, E Leiser, A Raney, J Seese

Von Braun Symposium Student Posters

No abstract provided.


Reconstruction Of The 3d Temperature And Species Concentration Spatial Distribution Of A Jet Engine Exhaust Plume Using An Infrared Fourier Transform Spectrometer Hyperspectral Imager, Mason D. Paulec Sep 2018

Reconstruction Of The 3d Temperature And Species Concentration Spatial Distribution Of A Jet Engine Exhaust Plume Using An Infrared Fourier Transform Spectrometer Hyperspectral Imager, Mason D. Paulec

Theses and Dissertations

The measurement of combustion byproducts is useful for determining pollution of any fuel burning application, efficiency of combustion, and determining detectability of aircraft exhausts. Both intrusive and non-intrusive techniques have been utilized to measure these quantities. For the majority of the non-intrusive techniques, the absorption and emission spectra of the gases are utilized for measurements. For this research, the use of the Telops Infrared Fourier Transform Spectrometer (IFTS) Hyperspectral Imager (HSI) was explored within the scope of combustion diagnostic methods, as an option for remote measurements of a jet turbine to determine concentration of species and temperature of the combustion …


Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan Sep 2018

Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan

Publications

This disclosure provides a system for damping slosh of a liquid within a tank, a baffle for use in the system, and a method of damping slosh using the system. The system includes a plurality of baffles. Each baffle has a body configured to substantially float upon the liquid. Each baffle also has an activation material received along at least a portion of the body. The activation material is magnetically reactive provided in a quantity sufficient to enable the body to be manipulated in the presence of a magnetic field (M). The system further includes an actuator configured to pro­vide …


Application Of Spectral Solution And Neural Network Techniques In Plasma Modeling For Electric Propulsion, Joseph R. Whitman Sep 2018

Application Of Spectral Solution And Neural Network Techniques In Plasma Modeling For Electric Propulsion, Joseph R. Whitman

Theses and Dissertations

A solver for Poisson's equation was developed using the Radix-2 FFT method first invented by Carl Friedrich Gauss. Its performance was characterized using simulated data and identical boundary conditions to those found in a Hall Effect Thruster. The characterization showed errors below machine-zero with noise-free data, and above 20% noise-to-signal strength, the error increased linearly with the noise. This solver can be implemented into AFRL's plasma simulator, the Thermophysics Universal Research Framework (TURF) and used to quickly and accurately compute the electric field based on charge distributions. The validity of a machine learning approach and data-based complex system modeling approach …


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman Jul 2018

Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman

SMU Data Science Review

In this paper, we present an analysis of flight data in order to determine whether the application of the Edge Aerodynamix Conformal Vortex Generator (CVG), applied to the wings of aircraft, reduces fuel flow during cruising conditions of flight. The CVG is a special treatment and film applied to the wings of an aircraft to protect the wings and reduce the non-laminar flow of air around the wings during flight. It is thought that by reducing the non-laminar flow or vortices around and directly behind the wings that an aircraft will move more smoothly through the air and provide a …


Electro-Drop Bouncing In Low-Gravity, Erin Stivers Schmidt Jul 2018

Electro-Drop Bouncing In Low-Gravity, Erin Stivers Schmidt

Dissertations and Theses

We investigate the dynamics of spontaneous jumps of water drops from electrically charged superhydrophobic dielectric substrates during a sudden step reduction in gravity level. In the brief free-fall environment of a drop tower, with a non-homogeneous external electric field arising due to dielectric surface charges (with surface potentials 0.4-1.8 kV), body forces acting on the jumped drops are primarily supplied by polarization stress and Coulombic attraction instead of gravity. This electric body force leads to a drop bouncing behavior similar to well-known phenomena in 1-g0, though occurring for much larger drops (~0.5 mL). We show a simple …


A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise May 2018

A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise

Mechanical Engineering Research Theses and Dissertations

In this thesis, a laser velocity sensor concept based on optical microresonators is presented and the application to spacecraft atmospheric entry is explored. The concept is based on the measurement of Doppler shift of back-scattered laser light. Specifically, the Doppler shift is detected by observing the whispering gallery optical modes (WGM) of a dielectric microresonator excited by the back scattered light from particulates and gas molecules. The microresonator replaces the typical Fabry-Perot interferometer and CCD camera system, thereby significantly reducing the size and weight of the overall detection system. This thesis presents proof-of-concept results for this measurement approach. The Doppler …


The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser May 2018

The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser

Senior Theses

There are many golf balls on the market today with varying dimple sizes, shapes, and distribution. These proprietary differences are all designed to reduce drag on the balls during flight, allowing golfers to hit the ball farther distances. There are limited published studies comparing how varying the dimples affects the reduction of drag. An experiment was developed in which golf balls were pulled through a water tank to measure the drag force acting on each ball. The water was chosen to allow for testing at slower velocities than the typical necessary speeds to cause turbulence for balls traveling in air. …


On The Reduction Of The Driving Force In Shear-Driven Flows, Sakib Shadman Apr 2018

On The Reduction Of The Driving Force In Shear-Driven Flows, Sakib Shadman

Electronic Thesis and Dissertation Repository

In shear-driven flows, an external driving force is needed to maintain the relative movement of horizontal plates. This thesis presents a systematic analysis on using spatially periodic heating and grooved surfaces to control this force. It is found that the use of periodic heating creates a buoyancy-driven effect that always reduces this force. The use of proper heating may even lead to the complete elimination of this force. It is further found that the use of isothermal grooved surfaces always enhances flow resistance, resulting in an increase of this force. When grooves and heating are applied together, their interaction induces …


Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski Apr 2018

Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski

McKelvey School of Engineering Theses & Dissertations

Few experimental methods today are capable of exploring the strength of materials at high strain rates (105 s-1). Those that are capable, such as the Split Hopkinson Bar, Taylor Anvil and Plate Impact suffer from instability and are generally limited to one dimensional wave propagation. Of particular interest is material response under biaxial compression, similar to that seen in inertial confinement fusion. Laser fusion fuel pellets typically undergo large strain rates as well as plastic deformation and non-linear behavior. This work briefly outlines an experimental procedure designed to replicate these large strain rates under biaxial compression using …


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter Apr 2018

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due to electronic …


Modeling A Space-Based Quantum Link, Alexander W. Duchane Mar 2018

Modeling A Space-Based Quantum Link, Alexander W. Duchane

Theses and Dissertations

Quantum sources and single photon detectors have improved, allowing quantum algorithms for communication, encryption, computing, and sensing to transition from theory and small-scale laboratory experiments to field experiments. One such quantum algorithm, Quantum Key Distribution, uses optical pulses to generate shared random bit strings between two locations. These shared bit strings can be turned into encryption keys to be used as a one-time-pad or integrated with symmetric encryption techniques such as the Advanced Encryption Standard. This method of key generation and encryption is resistant to future advances in quantum computing which significantly degrade the effectiveness of current asymmetric key sharing …


Wall-Modeled Large Eddy Simulation Of A Three-Dimensional Shock-Boundary Layer Interaction, Nicholas J. Marco Mar 2018

Wall-Modeled Large Eddy Simulation Of A Three-Dimensional Shock-Boundary Layer Interaction, Nicholas J. Marco

Theses and Dissertations

The direct simulation of turbulent flows is prohibitive at high Reynolds numbers; thus, methods such as RANS and LES are used. However, these methods still require a large number of cells near a solid boundary. To circumvent this issue, a Wall-Modeled Large Eddy Simulation (WM-LES) can be used. Of interest is how these wall models perform in comparison to a Wall-Resolved Large Eddy Simulation (WR-LES) and experimental results of a shock turbulent boundary layer interactions (STBLI) and specifically, whether equilibrium wall models are sufficient to resolve the oscillatory and hence non-equilibrium nature of these flows or whether a non-equilibrium model …


Mechanisms And Identification Of Unsteady Separation Development And Remediation, Matthew Scott Melius Jan 2018

Mechanisms And Identification Of Unsteady Separation Development And Remediation, Matthew Scott Melius

Dissertations and Theses

Unsteady flow separation represents a highly complex and important area of study within fluid mechanics. The extent of separation and specific time scales over which it occurs are not fully understood and has significant consequences in numerous industrial applications such as helicopters, jet engines, hydroelectric turbines and wind turbines. A direct consequence of unsteady separation is the erratic movement of the separation point which causes highly dynamic and unpredictable loads on an airfoil. Current computational models underestimate the aerodynamic loads due to the inaccurate prediction of the emergence and severity of unsteady flow separation especially in response to a sudden …


Insights Into The Magnetic Dead Layer In La0.7sr0.3mno3 Thin Films From Temperature, Magnetic Field And Thickness Dependence Of Their Magnetization, N. Mottaghi, M.S. Seehra, R. Trappen, S. Kumari, Chih-Yeh Huang, S. Yousefi, G.B. Cabrera, A.H. Romero, M.B. Holcomb Jan 2018

Insights Into The Magnetic Dead Layer In La0.7sr0.3mno3 Thin Films From Temperature, Magnetic Field And Thickness Dependence Of Their Magnetization, N. Mottaghi, M.S. Seehra, R. Trappen, S. Kumari, Chih-Yeh Huang, S. Yousefi, G.B. Cabrera, A.H. Romero, M.B. Holcomb

Faculty & Staff Scholarship

Experimental investigations of the magnetic dead layer in 7.6 nm thick film of La0.7Sr0.3MnO3 (LSMO) are reported. The dc magnetization (M) measurements for a sample cooled to T = 5 K in applied field H = 0 reveal the presence of negative remanent magnetization (NRM) in the M vs. H (magnetic field) measurements as well as in the M vs. T measurements in H = 50 Oe and 100 Oe. The M vs. T data in ZFC (zero-field-cooled) and FC (field-cooled) protocols are used to determine the blocking temperature TB in different H. Isothermal hysteresis loops at differ- ent T …


Radiation Effects In Tantalum Oxide-Based Resistive Memory Devices, Joshua Stuart Holt Jan 2018

Radiation Effects In Tantalum Oxide-Based Resistive Memory Devices, Joshua Stuart Holt

Legacy Theses & Dissertations (2009 - 2024)

There is an increasing need for radiation-hardened electronics as space programs grow in number and scope. Scientific interest in long-term exploration, particularly in high-radiation environments such as Europa, as well as commercial interest in establishing permanent outposts, requires high tolerance of radiation effects. A flash memory device might survive for several years in low Earth orbit, but only a few days in orbit around Europa due to the extremely high levels of radiation encountered there. Meanwhile, commercial interests, including asteroid mining and building a base on the moon or Mars would require electronic systems that could survive for long periods …


Electrostatic Potential And Valence Modulation In La0.7sr0.3mno3 Thin Films, Robbyn Trappen, A. C. Garcia- Castro, Vu Thanh Tra, Chih-Yeh Huang, Wilfredo Ibarra-Hernandez, James Fitch, Sobhit Singh, Jingling Zhou, Guerau Cabrera, Ying-Hao Chu, James M. Lebeau, Aldo H. Romero, Mikel B. Holcomb Jan 2018

Electrostatic Potential And Valence Modulation In La0.7sr0.3mno3 Thin Films, Robbyn Trappen, A. C. Garcia- Castro, Vu Thanh Tra, Chih-Yeh Huang, Wilfredo Ibarra-Hernandez, James Fitch, Sobhit Singh, Jingling Zhou, Guerau Cabrera, Ying-Hao Chu, James M. Lebeau, Aldo H. Romero, Mikel B. Holcomb

Faculty & Staff Scholarship

The Mn valence in thin film La0.7Sr0.3MnO3 was studied as a function of film thickness in the range of 1–16 unit cells with a combination of non-destructive bulk and surface sensitive X-ray absorption spectroscopy techniques. Using a layer-by-layer valence model, it was found that while the bulk averaged valence hovers around its expected value of 3.3, a significant deviation occurs within several unit cells of the surface and interface. These results were supported by first principles calculations. The surface valence increases to up to Mn3.7+, whereas the interface valence reduces down to Mn2.5+. The change in valence from the expected …


Learning Local, Quenched Disorder In Plasticity And Other Crackling Noise Phenomena, Stefanos Papanikolaou Jan 2018

Learning Local, Quenched Disorder In Plasticity And Other Crackling Noise Phenomena, Stefanos Papanikolaou

Faculty & Staff Scholarship

When far from equilibrium, many-body systems display behavior that strongly depends on the initial conditions. A characteristic such example is the phenomenon of plasticity of crystalline and amorphous materials that strongly depends on the material history. In plasticity modeling, the history is captured by a quenched, local and disordered flow stress distribution. While it is this disorder that causes avalanches that are commonly observed during nanoscale plastic deformation, the functional form and scaling properties have remained elusive. In this paper, a generic formalism is developed for deriving local disorder distributions from field- response (e.g., stress/strain) timeseries in models of crackling …


Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill Jan 2018

Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill

Masters Theses

"Pulsed-inductive discharges are a common method of producing a plasma. They provide a mechanism for quickly and efficiently generating a large volume of plasma for rapid use and are seen in applications including propulsion, fusion power, and high-power lasers. However, some common designs see a delayed response time due to the plasma forming when the magnitude of the magnetic field in the device is at a minimum. New designs are difficult to evaluate due to the amount of time needed to construct a new geometry and the high monetary cost of changing the power generation circuit. To more quickly evaluate …