Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Oceanography and Atmospheric Sciences and Meteorology

A Comparison Of Phytoplankton Communities In Lake Prince And The Western Branch Reservoir, Suffolk, Virginia, Cara Marie Muscio Apr 2001

A Comparison Of Phytoplankton Communities In Lake Prince And The Western Branch Reservoir, Suffolk, Virginia, Cara Marie Muscio

Biological Sciences Theses & Dissertations

Lake Prince and the Western Branch Reservoir are two eutrophic bodies of water located in Suffolk, Virginia. Lake Prince and its two small tributaries join the Western branch via a constructed spillway. This lake system is a source of water for the surrounding municipalities, and a recreational area for community citizens. In the past, these bodies of water had repeated incidents of low oxygen and nuisance algal blooms, particularly cyanobacteria species. As a result aerators have been installed in the main body of both Lake Prince and the Western Branch Reservoir. In addition, a pipeline has been installed from North …


Uptake Of Dissolved Organic Selenides By Marine Phytoplankton, Stephen B. Baines, Nicholas S. Fisher, Martina A. Doblin, Gregory A. Cutter Jan 2001

Uptake Of Dissolved Organic Selenides By Marine Phytoplankton, Stephen B. Baines, Nicholas S. Fisher, Martina A. Doblin, Gregory A. Cutter

OES Faculty Publications

Se is present in multiple oxidation states in nature, each of which has unique chemical and biological reactivities. As a consequence, the rate of Se incorporation into food webs or its role as either a limiting nutrient or a toxic substance is a function of complex biogeochemistry. In particular, little is understood about the accumulation of dissolved organic selenides by phyto- or bacterioplankton. We assessed the bioavailability of dissolved organic selenides to marine and estuarine phytoplankton by presenting various algal species with filtered lysates of the diatom, Thalassiosira pseudonana, grown on media amended with radiolabeled selenite (75Se[IV]). …


Control Of Phytoplankton Growth By Iron Supply And Irradiance In The Subantarctic Southern Ocean: Experimental Results From The Saz Project, P. W. Boyd, A. C. Crossley, G. R. Ditullio, F. B. Griffiths, D. A. Hutchins, B. Queguiner, Peter N. Sedwick, T. W. Trull Jan 2001

Control Of Phytoplankton Growth By Iron Supply And Irradiance In The Subantarctic Southern Ocean: Experimental Results From The Saz Project, P. W. Boyd, A. C. Crossley, G. R. Ditullio, F. B. Griffiths, D. A. Hutchins, B. Queguiner, Peter N. Sedwick, T. W. Trull

OES Faculty Publications

The influence of irradiance and Fe supply on phytoplankton processes was studied, north (47°S, 142°E) and south (54°S, 142°E) of the Subantarctic Front in austral autumn (March 1998). At both sites, resident cells exhibited nutrient stress (Fv/Fm 0 at 47°S and 9% I0 at 54°S because of MLDs of 40 (47°S) and 90 m (54°S), when these stations were occupied. The greater MLD at 54°S is reflected by tenfold higher cellular chlorophyll a levels in the resident phytoplankton. In the 47°S experiment, chlorophyll a levels increased to >1 μg/L-1 only in the high-Fe treatments, regardless …


Control Of Phytoplankton Growth By Iron And Silicic Acid Availability In The Subantarctic Ocean: Experimental Results From The Saz Project, D. A. Hutchins, Peter N. Sedwick, G. R. Ditullio, P. W. Boyd, B. Queguiner, F. B. Griffiths, C. Crossley Jan 2001

Control Of Phytoplankton Growth By Iron And Silicic Acid Availability In The Subantarctic Ocean: Experimental Results From The Saz Project, D. A. Hutchins, Peter N. Sedwick, G. R. Ditullio, P. W. Boyd, B. Queguiner, F. B. Griffiths, C. Crossley

OES Faculty Publications

Subantarctic Southern Ocean surface waters in the austral summer and autumn are characterized by high concentrations of nitrate and phosphate but low concentrations of dissolved iron (Fe, similar to0.05 nM) and silicic acid (Si, <1 muM). During the Subantarctic Zone AU9706 cruise in March 1998 we investigated the relative importance of Fe and Si in controlling phytoplankton growth and species composition at a station within the subantarctic water mass (46.8degreesS, 142degreesE) using shipboard bottle incubation experiments. Treatments included unamended controls; 1.9 nM added iron (+Fe); 9 muM added silicic acid (+Si); and 1.9 nM addediron plus 9 muM added silicic acid (+Fe+Si). We followed a detailed set of biological and biogeochemical parameters over 8 days. Fe added alone clearly increased community growth rates and nitrate drawdown and altered algal community composition relative to control treatments. Surprisingly, small, lightly silicified pennate diatoms grew when Fe was added either with or without Si, despite the extremely low ambient silicic acid concentrations. Pigment analyses suggest that lightly silicified chrysophytes (type 4 haptophytes) may have preferentially responded to Si added either with or without Fe. However, for many of the parameters measured the +Fe+Si treatments showed large increases relative to both the +Fe and +Si treatments. Our results suggest that iron is the proximate limiting nutrient for chlorophyll production, photosynthetic efficiency, nitrate drawdown, and diatom growth, but that Si also exerts considerable control over algal growth and species composition. Both nutrients together are needed to elicit a maximum growth response, suggesting that both Fe and Si play important roles in structuring the subantarctic phytoplankton community.