Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

2021

Water quality

Articles 1 - 2 of 2

Full-Text Articles in Oceanography and Atmospheric Sciences and Meteorology

Impacts Of Multiple Environmental Changes On Long‐Term Nitrogen Loading From The Chesapeake Bay Watershed, Shufen Pan, Zihao Bian, Hanqin Tian, Yuanzhi Yao, Raymond G. Najjar, Marjorie A.M. Friedrichs, Eileen E. Hofmann, Rongting Xu, Bowen Zhang Jan 2021

Impacts Of Multiple Environmental Changes On Long‐Term Nitrogen Loading From The Chesapeake Bay Watershed, Shufen Pan, Zihao Bian, Hanqin Tian, Yuanzhi Yao, Raymond G. Najjar, Marjorie A.M. Friedrichs, Eileen E. Hofmann, Rongting Xu, Bowen Zhang

CCPO Publications

Excessive nutrient inputs from land, particularly nitrogen (N), have been found to increase the occurrence of hypoxia and harmful algal blooms in coastal ecosystems. To identify the main contributors of increased N loading and evaluate the efficacy of water pollution control policies, it is essential to quantify and attribute the long‐term changes in riverine N export. Here, we use a state‐of‐the‐art terrestrial–aquatic interface model to examine how multiple environmental factors may have affected N export from the Chesapeake Bay watershed since 1900. These factors include changes in climate, carbon dioxide, land use, and N inputs (i.e., atmospheric N deposition, animal …


Effects Of Tidal Flooding On Estuarine Biogeochemistry: Quantifying Flood-Driven Nitrogen Inputs In An Urban, Lower Chesapeake Bay Sub-Tributary, Alfonso Macías-Tapia, Margaret R. Mulholland, Corday R. Selden, J. Derek Loftis, Peter W. Bernhardt Jan 2021

Effects Of Tidal Flooding On Estuarine Biogeochemistry: Quantifying Flood-Driven Nitrogen Inputs In An Urban, Lower Chesapeake Bay Sub-Tributary, Alfonso Macías-Tapia, Margaret R. Mulholland, Corday R. Selden, J. Derek Loftis, Peter W. Bernhardt

OES Faculty Publications

Sea level rise has increased the frequency of tidal flooding even without accompanying precipitation in many coastal areas worldwide. As the tide rises, inundates the landscape, and then recedes, it can transport organic and inorganic matter between terrestrial systems and adjacent aquatic environments. However, the chemical and biological effects of tidal flooding on urban estuarine systems remain poorly constrained. Here, we provide the first extensive quantification of floodwater nutrient concentrations during a tidal flooding event and estimate the nitrogen (N) loading to the Lafayette River, an urban tidal sub-tributary of the lower Chesapeake Bay (USA). To enable the scale of …