Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Oceanography and Atmospheric Sciences and Meteorology

Ultrahigh Resolution Ote-Ms Data For Ambient Daytime And Nighttime Aerosol And Ambient Fog Water From San Pietro Capofiume, Matthew Brege, Lynn Mazzoleni Aug 2021

Ultrahigh Resolution Ote-Ms Data For Ambient Daytime And Nighttime Aerosol And Ambient Fog Water From San Pietro Capofiume, Matthew Brege, Lynn Mazzoleni

Michigan Tech Research Data

This dataset and the methods used to obtain it are described in Chapter 3 of "EXTREME MOLECULAR DIVERSITY IN BIOMASS BURNING ATMOSPHERIC ORGANIC AEROSOL OBSERVED THROUGH ULTRAHIGH RESOLUTION MASS SPECTROMETRY" a Dissertation prepared by Matthew Brege and submitted as a Doctoral Thesis. This work can be accessed here: https://doi.org/10.37099/mtu.dc.etdr/927

Briefly, four days worth of concurrent daytime/nighttime aerosol and fog water samples were collected at San Pietro Capofiume in the Emilia Romagna region of Italy from 1-Dec to 4-Dec, 2015. The water soluble extracts of the aerosol filters and aliquots of the fog water were analyzed using ultrahigh resolution Orbitrap mass …


Ultrahigh Resolution Ote-Ms Data For Wildfire-Influenced Tar Ball Aerosol From The Pacific Northwest, Matthew Brege, Simeon Schum, Lynn Mazzoleni May 2021

Ultrahigh Resolution Ote-Ms Data For Wildfire-Influenced Tar Ball Aerosol From The Pacific Northwest, Matthew Brege, Simeon Schum, Lynn Mazzoleni

Michigan Tech Research Data

This dataset and the methods used to obtain it are described in Chapter 4 of "EXTREME MOLECULAR DIVERSITY IN BIOMASS BURNING ATMOSPHERIC ORGANIC AEROSOL OBSERVED THROUGH ULTRAHIGH RESOLUTION MASS SPECTROMETRY" a Dissertation prepared by Matthew Brege and submitted as a Doctoral Thesis. Access this associated work here: https://doi.org/10.37099/mtu.dc.etdr/927

Briefly, two samples of ambient aerosol were collected in the Pacific Northwest of the United States in 2017 which were heavily influenced by atmospheric tar balls. The acetonitrile soluble extracts of the aerosol filters were analyzed using ultrahigh resolution Orbitrap mass spectrometry (OTE-MS) using positive and negative modes of electrospray ionization as …


Using Uncrewed Aerial Vehicles For Identifying The Extent Of Invasive Phragmites Australis In Treatment Areas Enrolled In An Adaptive Management Program, Colin Brooks, Charlotte Weinstein, Andrew Poley, Amanda Grimm, Nicholas Marion, Laura Bourgeau-Chavez, Dana Hansen, Kurt Kowalski May 2021

Using Uncrewed Aerial Vehicles For Identifying The Extent Of Invasive Phragmites Australis In Treatment Areas Enrolled In An Adaptive Management Program, Colin Brooks, Charlotte Weinstein, Andrew Poley, Amanda Grimm, Nicholas Marion, Laura Bourgeau-Chavez, Dana Hansen, Kurt Kowalski

Michigan Tech Publications

Higher spatial and temporal resolutions of remote sensing data are likely to be useful for ecological monitoring efforts. There are many different treatment approaches for the introduced European genotype of Phragmites australis, and adaptive management principles are being integrated in at least some long-term monitoring efforts. In this paper, we investigated how natural color and a smaller set of near-infrared (NIR) images collected with low-cost uncrewed aerial vehicles (UAVs) could help quantify the aboveground effects of management efforts at 20 sites enrolled in the Phragmites Adaptive Management Framework (PAMF) spanning the coastal Laurentian Great Lakes region. We used object-based image …


Data Supporting The Paper "Is The Water Vapor Supersaturation Distribution Gaussian?", Subin Thomas, Prasanth Prabhakaran, W. Cantrell, Raymond Shaw Apr 2021

Data Supporting The Paper "Is The Water Vapor Supersaturation Distribution Gaussian?", Subin Thomas, Prasanth Prabhakaran, W. Cantrell, Raymond Shaw

Michigan Tech Research Data

The data in this file are from the MTU Pi Cloud Chamber and large eddy simulations. This work was supported by NSF grant AGS-1754244. Data are made available in support of the above publication by Thomas et al.. For any further use, e.g., for publication elsewhere, the authors should be contacted to ensure the appropriate use of the data and proper acknowledgment.


Multi-Source Eo For Dynamic Wetland Mapping And Monitoring In The Great Lakes Basin, Michael Battaglia, Sarah Banks, Amir Behnamian, Laura Bourgeau-Chavez Feb 2021

Multi-Source Eo For Dynamic Wetland Mapping And Monitoring In The Great Lakes Basin, Michael Battaglia, Sarah Banks, Amir Behnamian, Laura Bourgeau-Chavez

Michigan Tech Publications

Wetland managers, citizens and government leaders are observing rapid changes in coastal wetlands and associated habitats around the Great Lakes Basin due to human activity and climate variability. SAR and optical satellite sensors offer cost effective management tools that can be used to monitor wetlands over time, covering large areas like the Great Lakes and providing information to those making management and policy decisions. In this paper we describe ongoing efforts to monitor dynamic changes in wetland vegetation, surface water extent, and water level change. Included are assessments of simulated Radarsat Constellation Mission data to determine feasibility of continued monitoring …


Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky Jan 2021

Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky

Dissertations, Master's Theses and Master's Reports

Atmospheric scientists and climate modelers are faced with uncertainty around the process of ice production in clouds. While significant progress has been made in predicting homogeneous and heterogeneous ice nucleation rates as a function of temperature, recent experiments have shown that ice nucleation rates can be enhanced without decreasing temperature, through various mechanical agitations. One hypothesis for these findings is that mechanisms of stretching water and thereby inducing negative pressure in the liquid could lead to an increase in freezing rate. To better understand the viability of this concept, the effect of negative pressure on ice nucleation rates needs to …


Predicting The Impacts Of Climate Change On The Great Lakes Water Levels Using A Fully Coupled 3d Regional Modeling System, Miraj Kayastha Jan 2021

Predicting The Impacts Of Climate Change On The Great Lakes Water Levels Using A Fully Coupled 3d Regional Modeling System, Miraj Kayastha

Dissertations, Master's Theses and Master's Reports

The Great Lakes of North America are the largest surface freshwater system in the world and many ecosystems, industries, and coastal processes are sensitive to the changes in their water levels. The recent changes in the Great Lakes climate and water levels have particularly highlighted the importance of water level prediction. The water levels of the Great Lakes are primarily governed by the net basin supplies (NBS) of each lake which are the sum of over-lake precipitation and basin runoff minus lake evaporation. Recent studies have utilized Regional Climate Models (RCMs) with a fully coupled one-dimensional (1D) lake model to …


Modeling And Numerical Simulations Of The Michigan Tech Convection Cloud Chamber, Subin Thomas Jan 2021

Modeling And Numerical Simulations Of The Michigan Tech Convection Cloud Chamber, Subin Thomas

Dissertations, Master's Theses and Master's Reports

Understanding atmospheric clouds is essential for human progress, ranging from short-term effects such as when and how much it rains to long-term effects such as how much temperatures would rise due to global climate change. Clouds vary globally and seasonally; also they have length scales ranging from a few nanometers to a few kilometers and timescales from a few nanoseconds to a few weeks. Knowledge gaps in aerosol-cloud-turbulence interactions and a lack of sufficient resolution in observations pose a challenge in understanding cloud systems.

Experimental facilities like the Michigan Tech Cloud Chamber can provide a suitable platform for studying aerosol-cloud …


Activation Scavenging Of Aerosol : Effect Of Turbulence And Aerosol-Composition, Abu Sayeed Md Shawon Jan 2021

Activation Scavenging Of Aerosol : Effect Of Turbulence And Aerosol-Composition, Abu Sayeed Md Shawon

Dissertations, Master's Theses and Master's Reports

The interaction of aerosol particles with solar radiation significantly contributes to the global radiation balance. The magnitude of this aerosol-radiation interaction, among other parameters, depends on different aerosol properties, including how readily these particles would act as cloud condensation nuclei (CCN). These properties are governed by the formation and scavenging processes of aerosol. This dissertation explores some of these scavenging processes.

Favorable humidity and preexisting aerosol particles acting as CCN are the sine qua non conditions to form cloud droplets in Earth’s atmosphere. Forming cloud droplets (known as activation), meanwhile, acts as a wet scavenging mechanism for those CCN. Given …


Mapping Michigan's Historic Coastlines, Ryan A. Williams Jan 2021

Mapping Michigan's Historic Coastlines, Ryan A. Williams

Dissertations, Master's Theses and Master's Reports

This five-year project, sponsored by the Michigan Department of Environment, Great Lakes, and Energy, is working to map how Michigan’s Great Lakes shorelines have changed over the past 80+ years. Products of this project include publicly available digital, georeferenced, historic aerial photography datasets, as well as map layers depicting the locations of historic shorelines and bluff lines from 1938, 1980, 2009, 2016, 2018, and 2020. Additional products include bluff retreat risk areas, shoreline rate of change map layers, and tools to assist in the development of future Coastal Vulnerability Index projects for the Great Lakes. All products are available as …


Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek Jan 2021

Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek

Dissertations, Master's Theses and Master's Reports

Aerosol and water are inexorably linked, and both are ubiquitous within our atmosphere and required components for cloud formation. Relative humidity (RH), a temperature dependent quantity, can have a significant influence on the size, shape, and ultimately, the optical properties of the aerosol. RH can vary substantially on small spatial and short temporal scales in turbulent conditions due to rapid fluctuations in temperature and water vapor mixing ratio. Accurate assessment of optical enhancements due to an increase in RH is key for determining the particles’ impact on the climate and visibility.

A humidity-controlled cavity attenuated phase-shift albedometer (H-CAPS-PMSSA) …


Physicochemical Properties Of Atmospheric Aerosols And Their Effect On Ice Cloud Formation, Nurun Nahar Lata Jan 2021

Physicochemical Properties Of Atmospheric Aerosols And Their Effect On Ice Cloud Formation, Nurun Nahar Lata

Dissertations, Master's Theses and Master's Reports

Atmospheric aerosols play a vital role in the Earth's energy budget-directly by scattering and absorbing solar radiation and indirectly by acting as cloud condensation nuclei and ice-nucleating particles [1, 2]. The cloud formation potential of aerosol is driven by multiple factors, including surface properties, size distribution, composition, mixing state, phase state, and morphology [3]. The interaction of aerosols with clouds alters the aerosol's physicochemical properties. Those properties can also evolve during transport due to atmospheric processing, in turn, affect the aerosol's ice nucleation and cloud formation activities. This thesis presents experimental studies to understand the role of physicochemical properties of …