Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Oceanography and Atmospheric Sciences and Meteorology

Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman Nov 2020

Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman

Chemistry Faculty Publications

This Special Issue provides the first literature collection focused on the development and implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric measurements on Earth. The research covered in the Special Issue combines chemical, physical, and meteorological measurements performed in field campaigns as well as conceptual and laboratory work. Useful examples for the development of platforms and autonomous systems for environmental studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be to gather information for remote sensing in the atmosphere. The work serves as a key collection of articles to introduce …


Quantifying Climate Sensitivity And Climate-Driven Change In North American Amphibian Communities, David A. W. Miller, Evan H Campbell Grant, Erin Muths, Staci M. Amburgey, Michael J. Adams, Maxwell B. Joseph, J. Hardin Waddle, Pieter T. J. Johnson, Maureen E. Ryan, Benedikt R. Schmidt, Daniel L. Calhoun, Courtney L. Davis, Robert N. Fisher, David M. Green, Blake R. Hossack, Tracy A. G. Rittenhouse, Susan C. Walls, Larissa L. Bailey, Sam S. Cruickshank, Gary M. Fellers, Thomas A. Gorman, Carola A. Haas, Ward Hughson, David S. Pilliod, Steve J. Price, Andrew M. Ray, Walt Sadinski, Daniel Saenz, William J. Barichivich, Adrianne Brand Sep 2018

Quantifying Climate Sensitivity And Climate-Driven Change In North American Amphibian Communities, David A. W. Miller, Evan H Campbell Grant, Erin Muths, Staci M. Amburgey, Michael J. Adams, Maxwell B. Joseph, J. Hardin Waddle, Pieter T. J. Johnson, Maureen E. Ryan, Benedikt R. Schmidt, Daniel L. Calhoun, Courtney L. Davis, Robert N. Fisher, David M. Green, Blake R. Hossack, Tracy A. G. Rittenhouse, Susan C. Walls, Larissa L. Bailey, Sam S. Cruickshank, Gary M. Fellers, Thomas A. Gorman, Carola A. Haas, Ward Hughson, David S. Pilliod, Steve J. Price, Andrew M. Ray, Walt Sadinski, Daniel Saenz, William J. Barichivich, Adrianne Brand

Forestry and Natural Resources Faculty Publications

Changing climate will impact species’ ranges only when environmental variability directly impacts the demography of local populations. However, measurement of demographic responses to climate change has largely been limited to single species and locations. Here we show that amphibian communities are responsive to climatic variability, using > 500,000 time-series observations for 81 species across 86 North American study areas. The effect of climate on local colonization and persistence probabilities varies among eco-regions and depends on local climate, species life-histories, and taxonomic classification. We found that local species richness is most sensitive to changes in water availability during breeding and changes in …


An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman Sep 2018

An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman

Chemistry Faculty Publications

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. …


Herbivory And Eutrophication Mediate Grassland Plant Nutrient Responses Across A Global Climatic Gradient, T. Michael Anderson, Daniel M. Griffith, James B. Grace, Eric M. Lind, Peter B. Adler, Lori A. Biederman, Dana M. Blumenthal, Pedro Daleo, Jennifer Firn, Nicole Hagenah, W. Stanley Harpole, Andrew S. Macdougall, Rebecca L. Mcculley, Suzanne M. Prober, Anita C. Risch, Mahesh Sankaran, Martin Schütz, Eric W. Seabloom, Carly J. Stevens, Lauren L. Sullivan, Peter D. Wragg, Elizabeth T. Borer Apr 2018

Herbivory And Eutrophication Mediate Grassland Plant Nutrient Responses Across A Global Climatic Gradient, T. Michael Anderson, Daniel M. Griffith, James B. Grace, Eric M. Lind, Peter B. Adler, Lori A. Biederman, Dana M. Blumenthal, Pedro Daleo, Jennifer Firn, Nicole Hagenah, W. Stanley Harpole, Andrew S. Macdougall, Rebecca L. Mcculley, Suzanne M. Prober, Anita C. Risch, Mahesh Sankaran, Martin Schütz, Eric W. Seabloom, Carly J. Stevens, Lauren L. Sullivan, Peter D. Wragg, Elizabeth T. Borer

Plant and Soil Sciences Faculty Publications

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, …