Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Oceanography and Atmospheric Sciences and Meteorology

Delayed Coastal Inundations Caused By Ocean Dynamics Post-Hurricane Matthew, Kyungmin Park, Emanuele Di Lorenzo, Yinglong J. Zhang, Tal Ezer, Fei Yi Jan 2024

Delayed Coastal Inundations Caused By Ocean Dynamics Post-Hurricane Matthew, Kyungmin Park, Emanuele Di Lorenzo, Yinglong J. Zhang, Tal Ezer, Fei Yi

CCPO Publications

Post Hurricane Abnormal Water Level (PHAWL) poses a persistent inundation threat to coastal communities, yet unresolved knowledge gaps exist regarding its spatiotemporal impacts and causal mechanisms. Using a high-resolution coastal model with a set of observations, we find that the PHAWLs are up to 50 cm higher than the normal water levels for several weeks and cause delayed inundations around residential areas of the U.S. Southeast Coast (USSC). Numerical experiments reveal that while atmospheric forcing modulates the coastal PHAWLs, ocean dynamics primarily driven by the Gulf Stream control the mean component and duration of the shelf-scale PHAWLs. Because of the …


Dynamic Modeling Of Inland Flooding And Storm Surge On Coastal Cities Under Climate Change Scenarios: Transportation Infrastructure Impacts In Norfolk, Virginia Usa As A Case Study, Yawen Shen, Navid Tahvildari, Mohamed M. Morsy, Chris Huxley, T. Donna Chen, Jonathan Lee Goodall Jan 2022

Dynamic Modeling Of Inland Flooding And Storm Surge On Coastal Cities Under Climate Change Scenarios: Transportation Infrastructure Impacts In Norfolk, Virginia Usa As A Case Study, Yawen Shen, Navid Tahvildari, Mohamed M. Morsy, Chris Huxley, T. Donna Chen, Jonathan Lee Goodall

Civil & Environmental Engineering Faculty Publications

Low-lying coastal cities across the world are vulnerable to the combined impact of rainfall and storm tide. However, existing approaches lack the ability to model the combined effect of these flood mechanisms, especially under climate change and sea level rise (SLR). Thus, to increase flood resilience of coastal cities, modeling techniques to improve the understanding and prediction of the combined effect of these flood hazards are critical. To address this need, this study presents a modeling system for assessing the combined flood impact on coastal cities under selected future climate scenarios that leverages ocean modeling with land surface modeling capable …


Anticipating And Adapting To The Future Impacts Of Climate Change On The Health, Security And Welfare Of Low Elevation Coastal Zone (Lecz) Communities In Southeastern Usa, Thomas Allen, Joshua Behr, Anamaria Bukvic, Ryan S.D. Calder, Kiki Caruson, Charles Connor, Christopher D'Elia, David Dismukes, Robin Ersing, Rima Franklin, Jesse Goldstein, Jonathon Goodall, Scott Hemmerling, Jennifer Irish, Steven Lazarus, Derek Loftis, Mark Luther, Leigh Mccallister, Karen Mcglathery, Molly Mitchell, William Moore, Charles Reid Nichols, Karinna Nunez, Matthew Reidenbach, Julie Shortridge, Robert Weisberg, Robert Weiss, Lynn Donelson Wright, Meng Xia, Kehui Xu, Donald Young, Gary Zarillo, Julie C. Zinnert Jan 2021

Anticipating And Adapting To The Future Impacts Of Climate Change On The Health, Security And Welfare Of Low Elevation Coastal Zone (Lecz) Communities In Southeastern Usa, Thomas Allen, Joshua Behr, Anamaria Bukvic, Ryan S.D. Calder, Kiki Caruson, Charles Connor, Christopher D'Elia, David Dismukes, Robin Ersing, Rima Franklin, Jesse Goldstein, Jonathon Goodall, Scott Hemmerling, Jennifer Irish, Steven Lazarus, Derek Loftis, Mark Luther, Leigh Mccallister, Karen Mcglathery, Molly Mitchell, William Moore, Charles Reid Nichols, Karinna Nunez, Matthew Reidenbach, Julie Shortridge, Robert Weisberg, Robert Weiss, Lynn Donelson Wright, Meng Xia, Kehui Xu, Donald Young, Gary Zarillo, Julie C. Zinnert

Political Science & Geography Faculty Publications

Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stakeholders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to …