Open Access. Powered by Scholars. Published by Universities.®

Discrete Mathematics and Combinatorics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Discrete Mathematics and Combinatorics

Signings Of Graphs And Sign-Symmetric Signed Graphs, Ahmad Asiri Aug 2023

Signings Of Graphs And Sign-Symmetric Signed Graphs, Ahmad Asiri

Theses and Dissertations

In this dissertation, we investigate various aspects of signed graphs, with a particular focus on signings and sign-symmetric signed graphs. We begin by examining the complete graph on six vertices with one edge deleted ($K_6$\textbackslash e) and explore the different ways of signing this graph up to switching isomorphism. We determine the frustration index (number) of these signings and investigate the existence of sign-symmetric signed graphs. We then extend our study to the $K_6$\textbackslash 2e graph and the McGee graph with exactly two negative edges. We investigate the distinct ways of signing these graphs up to switching isomorphism and demonstrate …


Minimal Sets, Union-Closed Families, And Frankl's Conjecture, Christopher S. Flippen Jan 2023

Minimal Sets, Union-Closed Families, And Frankl's Conjecture, Christopher S. Flippen

Theses and Dissertations

The most common statement of Frankl's conjecture is that for every finite family of sets closed under the union operation, there is some element which belongs to at least half of the sets in the family. Despite its apparent simplicity, Frankl's conjecture has remained open and highly researched since its first mention in 1979. In this paper, we begin by examining the history and previous attempts at solving the conjecture. Using these previous ideas, we introduce the concepts of minimal sets and minimally-generated families, some ideas related to viewing union-closed families as posets, and some constructions of families involving poset-defined …


Selected Problems In Graph Coloring, Hudson Lafayette Jan 2023

Selected Problems In Graph Coloring, Hudson Lafayette

Theses and Dissertations

The Borodin–Kostochka Conjecture states that for a graph G, if ∆(G) ≥ 9 and ω(G) ≤ ∆(G) − 1, then χ(G) ≤ ∆(G) − 1. We prove the Borodin–Kostochka Conjecture for (P5, gem)-free graphs, i.e., graphs with no induced P5 and no induced K1 ∨P4.

For a graph G and t, k ∈ Z+ at-tone k-coloring of G is a function f : V (G) → [k] such that |f(v) ∩f (w)| < d(v,w) for all distinct v, w ∈ V(G). The t-tone chromatic number of G, denoted τt(G), is the minimum k such that G is t-tone k-colorable. For small values of t, we prove sharp or nearly sharp upper bounds on the t-tone chromatic number of various classes of sparse graphs. In particular, we determine τ2(G) exactly when mad(G) < 12/5 and also determine τ2(G), up to a small additive constant, when G is outerplanar. Finally, we determine τt(Cn) exactly when t ∈ {3, 4, 5}.


Rainbow Turan Methods For Trees, Victoria Bednar Jan 2023

Rainbow Turan Methods For Trees, Victoria Bednar

Theses and Dissertations

The rainbow Turan number, a natural extension of the well-studied traditional
Turan number, was introduced in 2007 by Keevash, Mubayi, Sudakov and Verstraete. The rainbow Tur ́an number of a graph F , ex*(n, F ), is the largest number of edges for an n vertex graph G that can be properly edge colored with no rainbow F subgraph. Chapter 1 of this dissertation gives relevant definitions and a brief history of extremal graph theory. Chapter 2 defines k-unique colorings and the related k-unique Turan number and provides preliminary results on this new variant. In Chapter 3, we explore the …


Investigations In The Semi-Strong Product Of Graphs And Bootstrap Percolation, Kevin J. Mccall Jan 2023

Investigations In The Semi-Strong Product Of Graphs And Bootstrap Percolation, Kevin J. Mccall

Theses and Dissertations

The semi-strong product of graphs G and H is a way of forming a new graph from the graphs G and H. The vertex set of the semi-strong product is the Cartesian product of the vertex sets of G and H, V(G) x V(H). The edges of the semi-strong product are determined as follows: (g1,h1)(g2,h2) is an edge of the product whenever g1g2 is an edge of G and h1h2 is an edge of H or g1 = g2 and h1h2 …