Open Access. Powered by Scholars. Published by Universities.®

Discrete Mathematics and Combinatorics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Discrete Mathematics and Combinatorics

Dna Self-Assembly Design For Gear Graphs, Chiara Mattamira Nov 2020

Dna Self-Assembly Design For Gear Graphs, Chiara Mattamira

Rose-Hulman Undergraduate Mathematics Journal

Application of graph theory to the well-known complementary properties of DNA strands has resulted in new insights about more efficient ways to form DNA nanostructures, which have been discovered as useful tools for drug delivery, biomolecular computing, and biosensors. The key concept underlying DNA nanotechnology is the formation of complete DNA complexes out of a given collection of branched junction molecules. These molecules can be modeled in the abstract as portions of graphs made up of vertices and half-edges, where complete edges are representations of double-stranded DNA pieces that have joined together. For efficiency, one aim is to minimize the …


The Name Tag Problem, Christian Carley Nov 2020

The Name Tag Problem, Christian Carley

Rose-Hulman Undergraduate Mathematics Journal

The Name Tag Problem is a thought experiment that, when formalized, serves as an introduction to the concept of an orthomorphism of $\Zn$. Orthomorphisms are a type of group permutation and their graphs are used to construct mutually orthogonal Latin squares, affine planes and other objects. This paper walks through the formalization of the Name Tag Problem and its linear solutions, which center around modular arithmetic. The characterization of which linear mappings give rise to these solutions developed in this paper can be used to calculate the exact number of linear orthomorphisms for any additive group Z/nZ, which is demonstrated …


Investigating First Returns: The Effect Of Multicolored Vectors, Shakuan Frankson, Myka Terry Nov 2020

Investigating First Returns: The Effect Of Multicolored Vectors, Shakuan Frankson, Myka Terry

Rose-Hulman Undergraduate Mathematics Journal

By definition, a first return is the immediate moment that a path, using vectors in the Cartesian plane, touches the x-axis after leaving it previously from a given point; the initial point is often the origin. In this case, using certain diagonal and horizontal vectors while restricting the movements to the first quadrant will cause almost every first return to end at the point (2n,0), where 2n counts the equal number of up and down steps in a path. The exception will be explained further in the sections below. Using the first returns of Catalan, Schröder, and Motzkin numbers, which …


On The Enumeration Of Shapes, May Cai, Nicholas Liao Nov 2020

On The Enumeration Of Shapes, May Cai, Nicholas Liao

Rose-Hulman Undergraduate Mathematics Journal

We define a shape as a union of finitely many line segments. Given an arrangement of lines on a plane, we count the number of shapes in the arrangement by examining the symmetries of the arrangement and applying Burnside's lemma. We further establish a generating function for the number of distinct line segments on a line with k distinguished points. We list all affine line arrangements of four and five line segments, together with the corresponding number of shapes on them.


Iterated Line Graphs On Bi-Regular Graphs And Trees, Brenden Balch Nov 2020

Iterated Line Graphs On Bi-Regular Graphs And Trees, Brenden Balch

Rose-Hulman Undergraduate Mathematics Journal

In 1965, van Rooij and Wilf considered sequences of line graphs, in which they grouped sequences of line graphs into four categories. We’ll add to their research by presenting results on sequences of line graphs for star graphs and bi-regular graphs. We will then investigate slight variations of star graphs.


Consecutive Prime And Highly Total Prime Labeling In Graphs, Robert Scholle Jan 2020

Consecutive Prime And Highly Total Prime Labeling In Graphs, Robert Scholle

Rose-Hulman Undergraduate Mathematics Journal

This paper examines the graph-theoretical concepts of consecutive prime labeling and highly total prime labeling. These are variations on prime labeling, introduced by Tout, Dabboucy, and Howalla in 1982. Consecutive prime labeling is defined here for the first time. Consecutive prime labeling requires that the labels of vertices in a graph be relatively prime to the labels of all adjacent vertices as well as all incident edges. We show that all paths, cycles, stars, and complete graphs have a consecutive prime labeling and conjecture that all simple connected graphs have a consecutive prime labeling.

This paper also expands on work …


Combinatorial Identities On Multinomial Coefficients And Graph Theory, Seungho Lee Jan 2020

Combinatorial Identities On Multinomial Coefficients And Graph Theory, Seungho Lee

Rose-Hulman Undergraduate Mathematics Journal

We study combinatorial identities on multinomial coefficients. In particular, we present several new ways to count the connected labeled graphs using multinomial coefficients.