Open Access. Powered by Scholars. Published by Universities.®

Discrete Mathematics and Combinatorics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Discrete Mathematics and Combinatorics

Conflict Dynamics In Scale-Free Networks With Degree Correlations And Hierarchical Structure, Eduardo Jacobo-Villegas, Bibiana Obregón-Quintana, Lev Guzmán-Vargas, Larry S. Liebovitch Oct 2022

Conflict Dynamics In Scale-Free Networks With Degree Correlations And Hierarchical Structure, Eduardo Jacobo-Villegas, Bibiana Obregón-Quintana, Lev Guzmán-Vargas, Larry S. Liebovitch

Publications and Research

We present a study of the dynamic interactions between actors located on complex networks with scale-free and hierarchical scale-free topologies with assortative mixing, that is, correlations between the degree distributions of the actors. The actor’s state evolves according to a model that considers its previous state, the inertia to change, and the influence of its neighborhood. We show that the time evolution of the system depends on the percentage of cooperative or competitive
interactions. For scale-free networks, we find that the dispersion between actors is higher when all interactions are either cooperative or competitive, while a balanced presence of interactions …


Combinatorial Optimization With Photonics-Inspired Clock Models, Mostafa Honari-Latifpour, Matthew S. Mills, Mohammad-Ali Miri Jan 2022

Combinatorial Optimization With Photonics-Inspired Clock Models, Mostafa Honari-Latifpour, Matthew S. Mills, Mohammad-Ali Miri

Publications and Research

NP-hard combinatorial optimization problems are in general hard problems that their computational complexity grows faster than polynomial scaling with the size of the problem. Thus, over the years there has been a great interest in developing unconventional methods and algorithms for solving such problems. Here, inspired by the nonlinear optical process of q-photon down-conversion, in which a photon is converted into q degenerate lower energy photons, we introduce a nonlinear dynamical model that builds on coupled single-variable phase oscillators and allows for efficiently approximating the ground state of the classical q-state planar Potts Hamiltonian. This reduces the exhaustive search in …