Open Access. Powered by Scholars. Published by Universities.®

Discrete Mathematics and Combinatorics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Discrete Mathematics and Combinatorics

Intersection Cohomology Of Rank One Local Systems For Arrangement Schubert Varieties, Shuo Lin Nov 2023

Intersection Cohomology Of Rank One Local Systems For Arrangement Schubert Varieties, Shuo Lin

Doctoral Dissertations

In this thesis we study the intersection cohomology of arrangement Schubert varieties with coefficients in a rank one local system on a hyperplane arrangement complement. We prove that the intersection cohomology can be computed recursively in terms of certain polynomials, if a local system has only $\pm 1$ monodromies. In the case where the hyperplane arrangement is generic central or equivalently the associated matroid is uniform and the local system has only $\pm 1$ monodromies, we prove that the intersection cohomology is a combinatorial invariant. In particular when the hyperplane arrangement is associated to the uniform matroid of rank $n-1$ …


Generating Polynomials Of Exponential Random Graphs, Mohabat Tarkeshian Aug 2023

Generating Polynomials Of Exponential Random Graphs, Mohabat Tarkeshian

Electronic Thesis and Dissertation Repository

The theory of random graphs describes the interplay between probability and graph theory: it is the study of the stochastic process by which graphs form and evolve. In 1959, Erdős and Rényi defined the foundational model of random graphs on n vertices, denoted G(n, p) ([ER84]). Subsequently, Frank and Strauss (1986) added a Markov twist to this story by describing a topological structure on random graphs that encodes dependencies between local pairs of vertices ([FS86]). The general model that describes this framework is called the exponential random graph model (ERGM).

In the past, determining when a probability distribution has strong …


Roots Of Quaternionic Polynomials And Automorphisms Of Roots, Olalekan Ogunmefun May 2023

Roots Of Quaternionic Polynomials And Automorphisms Of Roots, Olalekan Ogunmefun

Electronic Theses and Dissertations

The quaternions are an extension of the complex numbers which were first described by Sir William Rowan Hamilton in 1843. In his description, he gave the equation of the multiplication of the imaginary component similar to that of complex numbers. Many mathematicians have studied the zeros of quaternionic polynomials. Prominent of these, Ivan Niven pioneered a root-finding algorithm in 1941, Gentili and Struppa proved the Fundamental Theorem of Algebra (FTA) for quaternions in 2007. This thesis finds the zeros of quaternionic polynomials using the Fundamental Theorem of Algebra. There are isolated zeros and spheres of zeros. In this thesis, we …


Automorphisms Of A Generalized Quadrangle Of Order 6, Ryan Pesak May 2023

Automorphisms Of A Generalized Quadrangle Of Order 6, Ryan Pesak

Undergraduate Honors Theses

In this thesis, we study the symmetries of the putative generalized quadrangle of order 6. Although it is unknown whether such a quadrangle Q can exist, we show that if it does, that Q cannot be transitive on either points or lines. We first cover the background necessary for studying this problem. Namely, the theory of groups and group actions, the theory of generalized quadrangles, and automorphisms of GQs. We then prove that a generalized quadrangle Q of order 6 cannot have a point- or line-transitive automorphism group, and we also prove that if a group G acts faithfully on …


A Stronger Strong Schottky Lemma For Euclidean Buildings, Michael E. Ferguson Feb 2023

A Stronger Strong Schottky Lemma For Euclidean Buildings, Michael E. Ferguson

Dissertations, Theses, and Capstone Projects

We provide a criterion for two hyperbolic isometries of a Euclidean building to generate a free group of rank two. In particular, we extend the application of a Strong Schottky Lemma to buildings given by Alperin, Farb and Noskov. We then use this extension to obtain an infinite family of matrices that generate a free group of rank two. In doing so, we also introduce an algorithm that terminates in finite time if the lemma is applicable for pairs of certain kinds of matrices acting on the Euclidean building for the special linear group over certain discretely valued fields.


Cayley Map Embeddings Of Complete Graphs With Even Order, Michael O'Connor Jan 2023

Cayley Map Embeddings Of Complete Graphs With Even Order, Michael O'Connor

Honors Program Theses

German mathematician Claus Michael Ringel used voltage graphs to embed complete graphs onto orientable surfaces such that none of the graph's edges cross each other. Cayley maps do the same whilst being simpler to work with. The goal is to determine the efficiency of Cayley maps in embedding complete graphs onto orientable surfaces. This article focus on complete graphs of even order with an emphasis on graphs whose orders are congruent to 6 modulo 12 and 0 modulo 12. We establish 12 distinct classes that each have their own unique qualities. Through the generalization of a previous technique, we prove …


Discrete Analogues Of The Poincaré-Hopf Theorem, Kate Perkins Jan 2023

Discrete Analogues Of The Poincaré-Hopf Theorem, Kate Perkins

HMC Senior Theses

My thesis unpacks the relationship between two discrete formulations of the Poincaré-Hopf index theorem. Chapter 1 introduces necessary definitions. Chapter 2 describes the discrete analogs and their differences. Chapter 3 contains a proof that one analog implies the other and chapter 4 contains a proof that the Poincaré-Hopf theorem implies the discrete analogs. Finally, chapter 5 presents still open questions and further research directions.


Finite Matroidal Spaces And Matrological Spaces, Ziyad M. Hamad Jan 2023

Finite Matroidal Spaces And Matrological Spaces, Ziyad M. Hamad

Graduate Theses, Dissertations, and Problem Reports

The purpose of this thesis is to present new different spaces as attempts to generalize the concept of topological vector spaces. A topological vector space, a well-known concept in mathematics, is a vector space over a field \mathbb{F} with a topology that makes the addition and scalar multiplication operations of the vector space continuous functions. The field \mathbb{F} is usually \mathbb{R} or \mathbb{C} with their standard topologies. Since every vector space is a finitary matroid, we define two spaces called finite matroidal spaces and matrological spaces by replacing the linear structure of the topological vector space with a finitary matroidal …