Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mathematics

Self Similar Flows In Finite Or Infinite Two Dimensional Geometries, Leonardo Xavier Espin Estevez May 2009

Self Similar Flows In Finite Or Infinite Two Dimensional Geometries, Leonardo Xavier Espin Estevez

Dissertations

This study is concerned with several problems related to self-similar flows in pulsating channels. Exact or similarity solutions of the Navier-Stokes equations are of practical and theoretical importance in fluid mechanics. The assumption of self-similarity of the solutions is a very attractive one from both a theoretical and a practical point of view. It allows us to greatly simplify the Navier-Stokes equations into a single nonlinear one-dimensional partial differential equation (or ordinary differential equation in the case of steady flow) whose solutions are also exact solutions of the Navier-Stokes equations in the sense that no approximations are required in order …


Generalized Helmholtz-Kirchhoff Model For Two-Dimensional Distributed Vortex Motion, Raymond J. Nagem, Guido Sandri, David Uminsky, C. Eugene Wayne Jan 2009

Generalized Helmholtz-Kirchhoff Model For Two-Dimensional Distributed Vortex Motion, Raymond J. Nagem, Guido Sandri, David Uminsky, C. Eugene Wayne

Mathematics

The two-dimensional Navier-Stokes equations are rewritten as a system of coupled nonlinear ordinary differential equations. These equations describe the evolution of the moments of an expansion of the vorticity with respect to Hermite functions and of the centers of vorticity concentrations. We prove the convergence of this expansion and show that in the zero viscosity and zero core size limit we formally recover the Helmholtz-Kirchhoff model for the evolution of point vortices. The present expansion systematically incorporates the effects of both viscosity and finite vortex core size. We also show that a low-order truncation of our expansion leads to the …


Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2009

Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

We study the fully three-dimensional Stokes flow within a geometry consisting of two infinite cones with coincident apices. The Stokes approximation is valid near the apex and we consider the dominant flow features as it is approached. The cones are assumed to be stationary and the flow to be driven by an arbitrary far-field disturbance. We express the flow quantities in terms of eigenfunction expansions and allow for the first time for nonaxisymmetric flow regimes through an azimuthal wave number. The eigenvalue problem is solved numerically for successive wave numbers. Both real and complex sequences of eigenvalues are found, their …