Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mathematics

Towards A Generalization Of Fulton's Intersection Multiplicity Algorithm, Ryan Sandford Apr 2022

Towards A Generalization Of Fulton's Intersection Multiplicity Algorithm, Ryan Sandford

Electronic Thesis and Dissertation Repository

In this manuscript we generalize Fulton's bivariate intersection multiplicity algorithm to a partial intersection multiplicity algorithm in the n-variate setting. We extend this generalization of Fulton's algorithm to work at any point, rational or not, using the theory of regular chains. We implement these algorithms in Maple and provide experimental testing. The results indicate the proposed algorithm often outperforms the existing standard basis-free intersection multiplicity algorithm in Maple, typically by one to two orders of magnitude. Moreover, we also provide some examples where the proposed algorithm outperforms intersection multiplicity algorithms which rely on standard bases, indicating the proposed algorithm is …


Albert Forms, Quaternions, Schubert Varieties & Embeddability, Jasmin Omanovic Dec 2019

Albert Forms, Quaternions, Schubert Varieties & Embeddability, Jasmin Omanovic

Electronic Thesis and Dissertation Repository

The origin of embedding problems can be understood as an effort to find some minimal datum which describes certain algebraic or geometric objects. In the algebraic theory of quadratic forms, Pfister forms are studied for a litany of powerful properties and representations which make them particularly interesting to study in terms of embeddability. A generalization of these properties is captured by the study of central simple algebras carrying involutions, where we may characterize the involution by the existence of particular elements in the algebra. Extending this idea even further, embeddings are just flags in the Grassmannian, meaning that their study …


Algorithms To Compute Characteristic Classes, Martin Helmer Jun 2015

Algorithms To Compute Characteristic Classes, Martin Helmer

Electronic Thesis and Dissertation Repository

In this thesis we develop several new algorithms to compute characteristics classes in a variety of settings. In addition to algorithms for the computation of the Euler characteristic, a classical topological invariant, we also give algorithms to compute the Segre class and Chern-Schwartz-MacPherson (CSM) class. These invariants can in turn be used to compute other common invariants such as the Chern-Fulton class (or the Chern class in smooth cases).

We begin with subschemes of a projective space over an algebraically closed field of characteristic zero. In this setting we give effective algorithms to compute the CSM class, Segre class and …