Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mathematics

The Impact Of Truncating Data On The Predictive Ability For Single-Step Genomic Best Linear Unbiased Prediction, Jeremy T. Howard, Thomas A. Rathje, Caitlyn E. Bruns, Danielle F. Wilson-Wells, Stephen D. Kachman, Matthew L. Spangler Jan 2018

The Impact Of Truncating Data On The Predictive Ability For Single-Step Genomic Best Linear Unbiased Prediction, Jeremy T. Howard, Thomas A. Rathje, Caitlyn E. Bruns, Danielle F. Wilson-Wells, Stephen D. Kachman, Matthew L. Spangler

Department of Animal Science: Faculty Publications

Simulated and swine industry data sets were utilized to assess the impact of removing older data on the predictive ability of selection candidate estimated breeding values (EBV) when using single-step genomic best linear unbiased prediction (ssGBLUP). Simulated data included thirty replicates designed to mimic the structure of swine data sets. For the simulated data, varying amounts of data were truncated based on the number of ancestral generations back from the selection candidates. The swine data sets consisted of phenotypic and genotypic records for three traits across two breeds on animals born from 2003 to 2017. Phenotypes and genotypes were iteratively …


Random Search Models Of Foraging Behavior: Theory, Simulation, And Observation., Ben C. Nolting Dec 2013

Random Search Models Of Foraging Behavior: Theory, Simulation, And Observation., Ben C. Nolting

Department of Mathematics: Dissertations, Theses, and Student Research

Many organisms, from bacteria to primates, use stochastic movement patterns to find food. These movement patterns, known as search strategies, have recently be- come a focus of ecologists interested in identifying universal properties of optimal foraging behavior. In this dissertation, I describe three contributions to this field. First, I propose a way to extend Charnov's Marginal Value Theorem to the spatially explicit framework of stochastic search strategies. Next, I describe simulations that compare the efficiencies of sensory and memory-based composite search strategies, which involve switching between different behavioral modes. Finally, I explain a new behavioral analysis protocol for identifying the …


Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager Jun 2012

Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager

Department of Mathematics: Dissertations, Theses, and Student Research

Population dynamics tries to explain in a simple mechanistic way the variations of the size and structure of biological populations. In this dissertation we use mathematical modeling and analysis to study the various aspects of the dynamics of plant populations and their seed banks.

In Chapter 2 we investigate the impact of structural model uncertainty by considering different nonlinear recruitment functions in an integral projection model for Cirsium canescens. We show that, while having identical equilibrium populations, these two models can elicit drastically different transient dynamics. We then derive a formula for the sensitivity of the equilibrium population to …


The Time Invariance Principle, Ecological (Non)Chaos, And A Fundamental Pitfall Of Discrete Modeling, Bo Deng Mar 2007

The Time Invariance Principle, Ecological (Non)Chaos, And A Fundamental Pitfall Of Discrete Modeling, Bo Deng

Department of Mathematics: Faculty Publications

This paper is to show that most discrete models used for population dynamics in ecology are inherently pathological that their predications cannot be independently verified by experiments because they violate a fundamental principle of physics. The result is used to tackle an on-going controversy regarding ecological chaos. Another implication of the result is that all continuous dynamical systems must be modeled by differential equations. As a result it suggests that researches based on discrete modeling must be closely scrutinized and the teaching of calculus and differential equations must be emphasized for students of biology.