Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2012

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 33

Full-Text Articles in Mathematics

Modelling Three-Phase Flow In Metallurgical Processes, Christoph Goniva, Gijsbert Wierink, Kari Heiskanen, Stefan Pirker, Christoph Kloss Dec 2012

Modelling Three-Phase Flow In Metallurgical Processes, Christoph Goniva, Gijsbert Wierink, Kari Heiskanen, Stefan Pirker, Christoph Kloss

Gijsbert Wierink

The interaction between gasses, liquids, and solids plays a critical role in many processes, such as coating, granulation and the blast furnace process. In this paper we present a comprehensive numerical model for three phase flow including droplets, particles and gas. By means of a coupled Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) approach the physical core phenomena are pictured at a detailed level. Sub-models for droplet deformation, breakup and coalescence as well as droplet-particle and wet particle-particle interaction are applied. The feasibility of this model approach is demonstrated by its application to a rotating drum coater. The …


Investigation Of Heat Transfer And Flow Using Ribs Within Gas Turbine Blade Cooling Passage: Experimental And Hybrid Les/Rans Modeling, Sourabh Kumar Dec 2012

Investigation Of Heat Transfer And Flow Using Ribs Within Gas Turbine Blade Cooling Passage: Experimental And Hybrid Les/Rans Modeling, Sourabh Kumar

Theses and Dissertations

Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped …


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Effects Of Electrostatic Correlations On Electrokinetic Phenomena, Brian Storey, Martin Bazant Oct 2012

Effects Of Electrostatic Correlations On Electrokinetic Phenomena, Brian Storey, Martin Bazant

Brian Storey

The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture …


Container-Handling Operation Optimization At Koja Container Terminal, Moh Taufik Hidayat Aug 2012

Container-Handling Operation Optimization At Koja Container Terminal, Moh Taufik Hidayat

World Maritime University Dissertations

No abstract provided.


Design And Implementation Of Erp Software In Material Supply Chain Management For Siix Corp., Xing'er Chen Aug 2012

Design And Implementation Of Erp Software In Material Supply Chain Management For Siix Corp., Xing'er Chen

World Maritime University Dissertations

No abstract provided.


Freight Forecasting Of Dry Bulk Market Based On The Bp Neural Network, Qianran Huang Aug 2012

Freight Forecasting Of Dry Bulk Market Based On The Bp Neural Network, Qianran Huang

World Maritime University Dissertations

No abstract provided.


The Rationality Study On Capacity Allocation For Cscl’S Asia-Europe Route, Yan Zhou Aug 2012

The Rationality Study On Capacity Allocation For Cscl’S Asia-Europe Route, Yan Zhou

World Maritime University Dissertations

No abstract provided.


Study On Optimal Dwell Time At Jakarta International Container Terminal, Siti Nurrochmah Badrudin Aug 2012

Study On Optimal Dwell Time At Jakarta International Container Terminal, Siti Nurrochmah Badrudin

World Maritime University Dissertations

No abstract provided.


Ultra-Low Voltage Digital Circuits And Extreme Temperature Electronics Design, Aaron J. Arthurs Aug 2012

Ultra-Low Voltage Digital Circuits And Extreme Temperature Electronics Design, Aaron J. Arthurs

Graduate Theses and Dissertations

Certain applications require digital electronics to operate under extreme conditions e.g., large swings in ambient temperature, very low supply voltage, high radiation. Such applications include sensor networks, wearable electronics, unmanned aerial vehicles, spacecraft, and energyharvesting systems. This dissertation splits into two projects that study digital electronics supplied by ultra-low voltages and build an electronic system for extreme temperatures. The first project introduces techniques that improve circuit reliability at deep subthreshold voltages as well as determine the minimum required supply voltage. These techniques address digital electronic design at several levels: the physical process, gate design, and system architecture. This dissertation analyzes …


Response Surface Optimization Of Electron Beam Freeform Fabrication Depositions Using Design Of Experiments, Patricia A. Quigley Jul 2012

Response Surface Optimization Of Electron Beam Freeform Fabrication Depositions Using Design Of Experiments, Patricia A. Quigley

Engineering Management & Systems Engineering Theses & Dissertations

The Electron Beam Freeform Fabrication (EBF3 ) System is a material depositing, layer additive technique that produces three dimensional (3D) parts out of a wide range of metals in high vacuum, using an electron beam and wire feedstock. Screening deposition trials on a titanium alloy, Ti-6Al-4V, at the National Aeronautics Space Administration (NASA) revealed selective vaporization of the aluminum content of linear prototypes when subjected to chemical analysis. In this study, the aluminum content, bead height and bead width output responses were analyzed from a systematic study of the effects that the interactions of the EBF3 processing parameters …


Extended Pcr Rules For Dynamic Frames, Florentin Smarandache, Jean Dezert Jul 2012

Extended Pcr Rules For Dynamic Frames, Florentin Smarandache, Jean Dezert

Branch Mathematics and Statistics Faculty and Staff Publications

In most of classical fusion problems modeled from belief functions, the frame of discernment is considered as static. This means that the set of elements in the frame and the underlying integrity constraints of the frame are fixed forever and they do not change with time. In some applications, like in target tracking for example, the use of such invariant frame is not very appropriate because it can truly change with time. So it is necessary to adapt the Proportional Conflict Redistribution fusion rules (PCR5 and PCR6) for working with dynamical frames. In this paper, we propose an extension of …


Analytic And Finite Element Solutions Of The Power-Law Euler-Bernoulli Beams, Dongming Wei, Yu Liu May 2012

Analytic And Finite Element Solutions Of The Power-Law Euler-Bernoulli Beams, Dongming Wei, Yu Liu

Mathematics Faculty Publications

In this paper, we use Hermite cubic finite elements to approximate the solutions

of a nonlinear Euler-Bernoulli beam equation. The equation is derived

from Hollomon’s generalized Hooke’s law for work hardening materials with

the assumptions of the Euler-Bernoulli beam theory. The Ritz-Galerkin finite

element procedure is used to form a finite dimensional nonlinear program

problem, and a nonlinear conjugate gradient scheme is implemented to find

the minimizer of the Lagrangian. Convergence of the finite element approximations

is analyzed and some error estimates are presented. A Matlab finite

element code is developed to provide numerical solutions to the beam equation.

Some …


Section Abstracts: Astronomy, Mathematics And Physics With Materials Science Apr 2012

Section Abstracts: Astronomy, Mathematics And Physics With Materials Science

Virginia Journal of Science

Abstracts of the Astronomy, Mathematics, and Physics with Material Science Section for the 90th Annual Meeting of the Virginia Academy of Science, May 23-25, 2012, Norfolk State University, Norfolk, Virginia


Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu Apr 2012

Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu

Doctoral Dissertations

Nanopulses are ultra-wide-band (UWB) electromagnetic pulses with pulse duration of only a few nanoseconds and electric field amplitudes greater than 105 V/m. They have been widely used in the development of new technologies in the field of medicine. Therefore, the study of the nanopulse bioeffects is important to ensure the appropriate application with nanopulses in biomedical and biotechnological settings. The conventional finite-difference time-domain (FDTD) method for solving Maxwell's equations has been proven to be an effective method to solve the problems related to electromagnetism. However, its application is restricted by the Courant, Friedrichs, and Lewy (CFL) stability condition that confines …


Mathematical Modeling Of Pipeline Features For Robotic Inspection, Yang Gao Apr 2012

Mathematical Modeling Of Pipeline Features For Robotic Inspection, Yang Gao

Doctoral Dissertations

Underground pipeline systems play an indispensable role in transporting liquids in both developed and developing countries. The associated social and economic cost to repair a pipe upon abrupt failure is often unacceptable. Regular inspection is a preventative action that aims to monitor pipe conditions, catch abnormalities and reduce the chance of undesirable surprises. Robots with CCTV video cameras have been used for decades to inspect pipelines, yielding only qualitative information. It is becoming necessary and preferable for municipalities, project managers and engineers to also quantify the 3-D geometry of underground pipe networks. Existing robots equipped specialized hardware and software algorithms …


A Class Of Discontinuous Petrov–Galerkin Methods. Part Iii: Adaptivity, Leszek Demkowicz, Jay Gopalakrishnan, Antti H. Niemi Jan 2012

A Class Of Discontinuous Petrov–Galerkin Methods. Part Iii: Adaptivity, Leszek Demkowicz, Jay Gopalakrishnan, Antti H. Niemi

Mathematics and Statistics Faculty Publications and Presentations

We continue our theoretical and numerical study on the Discontinuous Petrov–Galerkin method with optimal test functions in context of 1D and 2D convection-dominated diffusion problems and hp-adaptivity. With a proper choice of the norm for the test space, we prove robustness (uniform stability with respect to the diffusion parameter) and mesh-independence of the energy norm of the FE error for the 1D problem. With hp-adaptivity and a proper scaling of the norms for the test functions, we establish new limits for solving convection-dominated diffusion problems numerically: for 1D and for 2D problems. The adaptive process is fully automatic and starts …


Strongly Complete Logics For Coalgebras, Alexander Kurz, Jiří Rosický Jan 2012

Strongly Complete Logics For Coalgebras, Alexander Kurz, Jiří Rosický

Engineering Faculty Articles and Research

Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts.

Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the …


Ogólnotechniczne Podstawy Biotechnologii Z Elementami Grafiki Inżynierskiej Ćw., Wojciech M. Budzianowski Jan 2012

Ogólnotechniczne Podstawy Biotechnologii Z Elementami Grafiki Inżynierskiej Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Materiały Odstresowujące, Wojciech M. Budzianowski Jan 2012

Materiały Odstresowujące, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


High-Order Central Finite-Volume Schemes For Atmospheric Modeling, Kiran Kumar Katta Jan 2012

High-Order Central Finite-Volume Schemes For Atmospheric Modeling, Kiran Kumar Katta

Open Access Theses & Dissertations

Atmospheric numerical modeling has been going through drastic changes over the past decade, mainly to utilize the massive computing capability of the petascale systems. This obliges the modelers to develop grid systems and numerical algorithms that facilitate exceptional level of scalability on these systems. The numerical algorithms that can address these challenges should have the local properties such as the high on-processor operation count and minimum parallel communication i.e., high parallel efficiency. They should also satisfy the following properties such as inherent local and global conservation, high-order accuracy, geometric flexibility, non-oscillatory advection and positivity preservation properties. The goal of this …


Neutrosophic Masses & Indeterminate Models Applications To Information Fusion, Florentin Smarandache Jan 2012

Neutrosophic Masses & Indeterminate Models Applications To Information Fusion, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper we introduce the indeterminate models in information fusion, which are due either to the existence of some indeterminate elements in the fusion space or to some indeterminate masses. The best approach for dealing with such models is the neutrosophic logic.


Wireless Channel Equalization In Digital Communication Systems, Sammuel Jalali Jan 2012

Wireless Channel Equalization In Digital Communication Systems, Sammuel Jalali

CGU Theses & Dissertations

Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential.

The theoretical background for wireless channels modeling and …


Completeness For The Coalgebraic Cover Modality, Clemens Kupke, Alexander Kurz, Yde Venema Jan 2012

Completeness For The Coalgebraic Cover Modality, Clemens Kupke, Alexander Kurz, Yde Venema

Engineering Faculty Articles and Research

We study the finitary version of the coalgebraic logic introduced by L. Moss. The syntax of this logic, which is introduced uniformly with respect to a coalgebraic type functor, required to preserve weak pullbacks, extends that of classical propositional logic with a so-called coalgebraic cover modality depending on the type functor. Its semantics is defined in terms of a categorically defined relation lifting operation.

As the main contributions of our paper we introduce a derivation system, and prove that it provides a sound and complete axiomatization for the collection of coalgebraically valid inequalities. Our soundness and completeness proof is algebraic, …


Coalgebraic Logics (Dagstuhl Seminar 12411), Ernst-Erich Doberkat, Alexander Kurz Jan 2012

Coalgebraic Logics (Dagstuhl Seminar 12411), Ernst-Erich Doberkat, Alexander Kurz

Engineering Faculty Articles and Research

This report documents the program and the outcomes of Dagstuhl Seminar 12411 “Coalgebraic Logics”. The seminar deals with recent developments in the area of coalgebraic logic, a branch of logics which combines modal logics with coalgebraic semantics. Modal logic finds its uses when reasoning about behavioural and temporal properties of computation and communication, coalgebras have evolved into a general theory of systems. Consequently, it is natural to combine both areas for a mathematical description of system specification. Coalgebraic logics are closely related to the broader categories semantics/formal methods and verification/logic.


Consensus-Type Stochastic Approximation Algorithms, Yu Sun Jan 2012

Consensus-Type Stochastic Approximation Algorithms, Yu Sun

Wayne State University Dissertations

This work is concerned with asymptotic properties of consensus-type algorithms for networked systems whose topologies switch randomly. The regime-switching process is modeled as a discrete-time Markov chain with a nite state space. The consensus control is achieved by designing stochastic approximation algorithms. In the setup, the regime-switching process (the Markov chain) contains a rate parameter

"Ε> 0 in the transition probability matrix that characterizes how frequently the topology switches. On the other hand, the consensus control algorithm uses a step-size Μ that denes how fast the network states are updated. Depending on their relative values, three distinct scenarios emerge. Under …


Colonel Blotto Games And Lancaster's Equations: A Novel Military Modeling Combination, Andrew Collins, Patrick T. Hester Jan 2012

Colonel Blotto Games And Lancaster's Equations: A Novel Military Modeling Combination, Andrew Collins, Patrick T. Hester

VMASC Publications

Military strategists face a difficult task when engaged in a battle against an adversarial force. They have to predict both what tactics their opponent will employ and the outcomes of any resultant conflicts in order to make the best decision about their actions. Game theory has been the dominant technique used by analysts to investigate the possible actions that an enemy will employ. Traditional game theory can be augmented by use of Lanchester equations, a set of differential equations used to determine the outcome of a conflict. This paper demonstrates a novel combination of game theory and Lanchester equations using …


Extenics In Higher Dimensions, Florentin Smarandache Jan 2012

Extenics In Higher Dimensions, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

Prof. Dr. Florentin Smarandache, during his research period in the Summer of 2012 at

the Research Institute of Extenics and Innovation Methods, from Guangdong University of

Technology, in Guangzhou, China, has introduced the Linear and Non-Linear Attraction

Point Principle and the Network of Attraction Curves, he has generalized the 1D Extension

Distance and the 1D Dependent Function to 2D, 3D, and in general to n-D Spaces, and he

generalized Qiao-Xing Li’s and Xing-Sen Li’s definitions of the Location Value of a Point

and the Dependent Function of a Point on a Single Finite Interval from one dimension (1D) …


Erasure Techniques In Mrd Codes, Florentin Smarandache, W.B. Vasantha Kandasamy, R. Sujatha, R.S. Raja Durai Jan 2012

Erasure Techniques In Mrd Codes, Florentin Smarandache, W.B. Vasantha Kandasamy, R. Sujatha, R.S. Raja Durai

Branch Mathematics and Statistics Faculty and Staff Publications

In this book the authors study the erasure techniques in concatenated Maximum Rank Distance (MRD) codes. The authors for the first time in this book introduce the new notion of concatenation of MRD codes with binary codes, where we take the outer code as the RD code and the binary code as the inner code. The concatenated code consists of the codewords of the outer code expressed in terms of the alphabets of the inner code. These new class of codes are defined as CRM codes. This concatenation techniques helps one to construct any CRM code of desired minimum distance …


Applications Of Extenics To 2d-Space And 3d-Space, Florentin Smarandache, Victor Vladareanu Jan 2012

Applications Of Extenics To 2d-Space And 3d-Space, Florentin Smarandache, Victor Vladareanu

Branch Mathematics and Statistics Faculty and Staff Publications

In this article one proposes several numerical examples for applying the extension set to 2D- and 3D-spaces. While rectangular and prism geometrical figures can easily be decomposed from 2D and 3D into 1D linear problems, similarly for the circle and the sphere, it is not possible in general to do the same for other geometrical figures.