Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mathematics

Individual Based Model To Simulate The Evolution Of Insecticide Resistance, William B. Jamieson Dec 2019

Individual Based Model To Simulate The Evolution Of Insecticide Resistance, William B. Jamieson

Department of Mathematics: Dissertations, Theses, and Student Research

Insecticides play a critical role in agricultural productivity. However, insecticides impose selective pressures on insect populations, so the Darwinian principles of natural selection predict that resistance to the insecticide is likely to form in the insect populations. Insecticide resistance, in turn, severely reduces the utility of the insecticides being used. Thus there is a strong economic incentive to reduce the rate of resistance evolution. Moreover, resistance evolution represents an example of evolution under novel selective pressures, so its study contributes to the fundamental understanding of evolutionary theory.

Insecticide resistance often represents a complex interplay of multiple fitness trade-offs for individual …


Random Search Models Of Foraging Behavior: Theory, Simulation, And Observation., Ben C. Nolting Dec 2013

Random Search Models Of Foraging Behavior: Theory, Simulation, And Observation., Ben C. Nolting

Department of Mathematics: Dissertations, Theses, and Student Research

Many organisms, from bacteria to primates, use stochastic movement patterns to find food. These movement patterns, known as search strategies, have recently be- come a focus of ecologists interested in identifying universal properties of optimal foraging behavior. In this dissertation, I describe three contributions to this field. First, I propose a way to extend Charnov's Marginal Value Theorem to the spatially explicit framework of stochastic search strategies. Next, I describe simulations that compare the efficiencies of sensory and memory-based composite search strategies, which involve switching between different behavioral modes. Finally, I explain a new behavioral analysis protocol for identifying the …


Creating An Interdisciplinary Research Course In Mathematical Ecology, Glenn Ledder, Brigitte Tenhumberg Jan 2013

Creating An Interdisciplinary Research Course In Mathematical Ecology, Glenn Ledder, Brigitte Tenhumberg

School of Biological Sciences: Faculty Publications

An integrated interdisciplinary research course in biology and mathematics is useful for recruiting students to interdisciplinary research careers, but there are difficulties involved in creating and implementing it. We describe the genesis, objectives, design policies, and structure of the Research Skills in Theoretical Ecology course at the University of Nebraska–Lincoln and discuss the difficulties that can arise in designing and implementing interdisciplinary courses.


An Interdisciplinary Research Course In Theoretical Ecology For Young Undergraduates, Glenn Ledder, Brigitte Tenhumberg, G. Travis Adams Jan 2013

An Interdisciplinary Research Course In Theoretical Ecology For Young Undergraduates, Glenn Ledder, Brigitte Tenhumberg, G. Travis Adams

School of Biological Sciences: Faculty Publications

As part of an interdepartmental effort to attract promising young students to research at the interface between mathematics and biology, we created a course in which groups of recent high school graduates and first-year college students conducted a research project in insect population dynamics. The students set up experiments, collected data, used the data to develop mathematical models, tested their models against further experiments, and prepared their results for dissemination. The course was self-contained in that the lecture portion developed the mathematical, statistical, and biological background needed for the research. A special writing component helped students learn the principles of …


Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager Jun 2012

Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager

Department of Mathematics: Dissertations, Theses, and Student Research

Population dynamics tries to explain in a simple mechanistic way the variations of the size and structure of biological populations. In this dissertation we use mathematical modeling and analysis to study the various aspects of the dynamics of plant populations and their seed banks.

In Chapter 2 we investigate the impact of structural model uncertainty by considering different nonlinear recruitment functions in an integral projection model for Cirsium canescens. We show that, while having identical equilibrium populations, these two models can elicit drastically different transient dynamics. We then derive a formula for the sensitivity of the equilibrium population to …


The Time Invariance Principle, Ecological (Non)Chaos, And A Fundamental Pitfall Of Discrete Modeling, Bo Deng Mar 2007

The Time Invariance Principle, Ecological (Non)Chaos, And A Fundamental Pitfall Of Discrete Modeling, Bo Deng

Department of Mathematics: Faculty Publications

This paper is to show that most discrete models used for population dynamics in ecology are inherently pathological that their predications cannot be independently verified by experiments because they violate a fundamental principle of physics. The result is used to tackle an on-going controversy regarding ecological chaos. Another implication of the result is that all continuous dynamical systems must be modeled by differential equations. As a result it suggests that researches based on discrete modeling must be closely scrutinized and the teaching of calculus and differential equations must be emphasized for students of biology.