Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 52

Full-Text Articles in Mathematics

Analyzing Network Topology For Ddos Mitigation Using The Abelian Sandpile Model, Bhavana Panchumarthi, Monroe Ame Stephenson Aug 2020

Analyzing Network Topology For Ddos Mitigation Using The Abelian Sandpile Model, Bhavana Panchumarthi, Monroe Ame Stephenson

altREU Projects

A Distributed Denial of Service (DDoS) is a cyber attack, which is capable of triggering a cascading failure in the victim network. While DDoS attacks come in different forms, their general goal is to make a network's service unavailable to its users. A common, but risky, countermeasure is to blackhole or null route the source, or the attacked destination. When a server becomes a blackhole, or referred to as the sink in the paper, the data that is assigned to it "disappears" or gets deleted. Our research shows how mathematical modeling can propose an alternative blackholing strategy that could improve …


A Mass Conserving Mixed Stress Formulation For Stokes Flow With Weakly Imposed Stress Symmetry, Jay Gopalakrishnan, Philip L. Lederer, Joachim Schoeberl Jan 2020

A Mass Conserving Mixed Stress Formulation For Stokes Flow With Weakly Imposed Stress Symmetry, Jay Gopalakrishnan, Philip L. Lederer, Joachim Schoeberl

Mathematics and Statistics Faculty Publications and Presentations

We introduce a new discretization of a mixed formulation of the incompressible Stokes equations that includes symmetric viscous stresses. The method is built upon a mass conserving mixed formulation that we recently studied. The improvement in this work is a new method that directly approximates the viscous fluid stress $\sigma$, enforcing its symmetry weakly. The finite element space in which the stress is approximated consists of matrix-valued functions having continuous “normal-tangential” components across element interfaces. Stability is achieved by adding certain matrix bubbles that were introduced earlier in the literature on finite elements for linear elasticity. Like the earlier work, …


Diffusion And Consensus On Weakly Connected Directed Graphs, J. J. P. Veerman, Ewan Kummel Oct 2019

Diffusion And Consensus On Weakly Connected Directed Graphs, J. J. P. Veerman, Ewan Kummel

Mathematics and Statistics Faculty Publications and Presentations

Let G be a weakly connected directed graph with asymmetric graph Laplacian L. Consensus and diffusion are dual dynamical processes defined on G by x˙=−Lx for consensus and p˙=−pL for diffusion. We consider both these processes as well their discrete time analogues. We define a basis of row vectors {γ¯i}ki=1 of the left null-space of L and a basis of column vectors {γi}ki=1 of the right null-space of L in terms of the partition of G into strongly connected components. This allows for complete characterization of the asymptotic behavior of both diffusion and consensus --- discrete and continuous --- in …


Navigating Around Convex Sets, J. J. P. Veerman Jun 2019

Navigating Around Convex Sets, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

We review some basic results of convex analysis and geometry in Rn in the context of formulating a differential equation to track the distance between an observer flying outside a convex set K and K itself.


Stability Conditions For Coupled Oscillators In Linear Arrays, Pablo Enrique Baldivieso Blanco, J.J.P. Veerman Jan 2019

Stability Conditions For Coupled Oscillators In Linear Arrays, Pablo Enrique Baldivieso Blanco, J.J.P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

In this paper, we give necessary conditions for stability of flocks in R. We focus on linear arrays with decentralized agents, where each agent interacts with only a few its neighbors. We obtain explicit expressions for necessary conditions for asymptotic stability in the case that the systems consists of a periodic arrangement of two or three different types of agents, i.e. configurations as follows: ...2-1-2-1 or ...3-2-1-3-2-1. Previous literature indicated that the (necessary) condition for stability in the case of a single agent (...1-1-1) held that the first moment of certain coefficients governing the interactions between agents has to be …


The Auxiliary Space Preconditioner For The De Rham Complex, Jay Gopalakrishnan, Martin Neumüller, Panayot S. Vassilevski May 2018

The Auxiliary Space Preconditioner For The De Rham Complex, Jay Gopalakrishnan, Martin Neumüller, Panayot S. Vassilevski

Portland Institute for Computational Science Publications

We generalize the construction and analysis of auxiliary space preconditioners to the n-dimensional finite element subcomplex of the de Rham complex. These preconditioners are based on a generalization of a decomposition of Sobolev space functions into a regular part and a potential. A discrete version is easily established using the tools of finite element exterior calculus. We then discuss the four-dimensional de Rham complex in detail. By identifying forms in four dimensions (4D) with simple proxies, form operations are written out in terms of familiar algebraic operations on matrices, vectors, and scalars. This provides the basis for our implementation of …


Variational Geometric Approach To Generalized Differential And Conjugate Calculi In Convex Analysis, Boris S. Mordukhovich, Nguyen Mau Nam, R. Blake Rector, T. Tran Dec 2017

Variational Geometric Approach To Generalized Differential And Conjugate Calculi In Convex Analysis, Boris S. Mordukhovich, Nguyen Mau Nam, R. Blake Rector, T. Tran

Mathematics and Statistics Faculty Publications and Presentations

This paper develops a geometric approach of variational analysis for the case of convex objects considered in locally convex topological spaces and also in Banach space settings. Besides deriving in this way new results of convex calculus, we present an overview of some known achievements with their unified and simplified proofs based on the developed geometric variational schemes. Key words. Convex and variational analysis, Fenchel conjugates, normals and subgradients, coderivatives, convex calculus, optimal value functions.


Computational Algorithms For Improved Representation Of The Model Error Covariance In Weak-Constraint 4d-Var, Jeremy A. Shaw Mar 2017

Computational Algorithms For Improved Representation Of The Model Error Covariance In Weak-Constraint 4d-Var, Jeremy A. Shaw

Dissertations and Theses

Four-dimensional variational data assimilation (4D-Var) provides an estimate to the state of a dynamical system through the minimization of a cost functional that measures the distance to a prior state (background) estimate and observations over a time window. The analysis fit to each information input component is determined by the specification of the error covariance matrices in the data assimilation system (DAS). Weak-constraint 4D-Var (w4D-Var) provides a theoretical framework to account for modeling errors in the analysis scheme. In addition to the specification of the background error covariance matrix, the w4D-Var formulation requires information on the model error statistics and …


Equators Have At Most Countable Many Singularities With Bounded Total Angle, Pilar Herreros, Mario Ponce, J.J.P. Veerman Jan 2017

Equators Have At Most Countable Many Singularities With Bounded Total Angle, Pilar Herreros, Mario Ponce, J.J.P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

For distinct points p and q in a two-dimensional Riemannian manifold, one defines their mediatrix Lpq as the set of equidistant points to p and q. It is known that mediatrices have a cell decomposition consisting of a finite number of branch points connected by Lipschitz curves. In the case of a topological sphere, mediatrices are called equators and it can benoticed that there are no branching points, thus an equator is a topological circle with possibly many Lipschitz singularities. This paper establishes that mediatrices have the radial …


Computational Methods For Asynchronous Basins, Ian H. Dinwoodie Dec 2016

Computational Methods For Asynchronous Basins, Ian H. Dinwoodie

Mathematics and Statistics Faculty Publications and Presentations

For a Boolean network we consider asynchronous updates and define the exclusive asynchronous basin of attraction for any steady state or cyclic attractor. An algorithm based on commutative algebra is presented to compute the exclusive basin. Finally its use for targeting desirable attractors by selective intervention on network nodes is illustrated with two examples, one cell signalling network and one sensor network measuring human mobility.


Minimizing Differences Of Convex Functions With Applications To Facility Location And Clustering, Mau Nam Nguyen, R. Blake Rector, Daniel J. Giles Feb 2016

Minimizing Differences Of Convex Functions With Applications To Facility Location And Clustering, Mau Nam Nguyen, R. Blake Rector, Daniel J. Giles

Mathematics and Statistics Faculty Publications and Presentations

In this paper we develop algorithms to solve generalized Fermat-Torricelli problems with both positive and negative weights and multifacility location problems involving distances generated by Minkowski gauges. We also introduce a new model of clustering based on squared distances to convex sets. Using the Nesterov smoothing technique and an algorithm for minimizing differences of convex functions called the DCA introduced by Tao and An, we develop effective algorithms for solving these problems. We demonstrate the algorithms with a variety of numerical examples.


Signal Velocity In Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J. J. P. Veerman Jan 2016

Signal Velocity In Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles. The model considers asymmetric, linear, decentralized dynamics, where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. We first derive necessary and sufficient conditions for asymptotic stability, then derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocities c+>0 and c−f(x−c+t) in the direction …


Full State Revivals In Linearly Coupled Chains With Commensurate Eigenspectra, J. J. P. Veerman, Jovan Petrovic Jan 2016

Full State Revivals In Linearly Coupled Chains With Commensurate Eigenspectra, J. J. P. Veerman, Jovan Petrovic

Mathematics and Statistics Faculty Publications and Presentations

Coherent state transfer is an important requirement in the construction of quantum computer hardware. The state transfer can be realized by linear next-neighbour-coupled finite chains. Starting from the commensurability of chain eigenvalues as the general condition of periodic dynamics, we find chains that support full periodic state revivals. For short chains, exact solutions are found analytically by solving the inverse eigenvalue problem to obtain the coupling coefficients between chain elements. We apply the solutions to design optical waveguide arrays and perform numerical simulations of light propagation thorough realistic waveguide structures. Applications of the presented method to the realization of a …


On A Convex Set With Nondifferentiable Metric Projection, Shyan S. Akmal, Nguyen Mau Nam, J. J. P. Veerman Aug 2015

On A Convex Set With Nondifferentiable Metric Projection, Shyan S. Akmal, Nguyen Mau Nam, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

A remarkable example of a nonempty closed convex set in the Euclidean plane for which the directional derivative of the metric projection mapping fails to exist was constructed by A. Shapiro. In this paper, we revisit and modify that construction to obtain a convex set with smooth boundary which possesses the same property.


Monomials And Basin Cylinders For Network Dynamics, Daniel Austin, Ian H. Dinwoodie Jan 2015

Monomials And Basin Cylinders For Network Dynamics, Daniel Austin, Ian H. Dinwoodie

Mathematics and Statistics Faculty Publications and Presentations

We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.


Nonsmooth Algorithms And Nesterov's Smoothing Technique For Generalized Fermat-Torricelli Problems, Nguyen Mau Nam, Nguyen Thai An, R. Blake Rector, Jie Sun Oct 2014

Nonsmooth Algorithms And Nesterov's Smoothing Technique For Generalized Fermat-Torricelli Problems, Nguyen Mau Nam, Nguyen Thai An, R. Blake Rector, Jie Sun

Mathematics and Statistics Faculty Publications and Presentations

We present algorithms for solving a number of new models of facility location which generalize the classical Fermat--Torricelli problem. Our first approach involves using Nesterov's smoothing technique and the minimization majorization principle to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the nondifferentiability of the cost functions. Convergence results of the algorithms are proved and numerical tests are presented to show the effectiveness of the proposed algorithms.


Transients In The Synchronization Of Oscillator Arrays, Carlos E. Cantos, J. J. P. Veerman Oct 2014

Transients In The Synchronization Of Oscillator Arrays, Carlos E. Cantos, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

The purpose of this note is threefold. First we state a few conjectures that allow us to rigorously derive a theory which is asymptotic in N (the number of agents) that describes transients in large arrays of (identical) linear damped harmonic oscillators in R with completely decentralized nearest neighbor interaction. We then use the theory to establish that in a certain range of the parameters transients grow linearly in the number of agents (and faster outside that range). Finally, in the regime where this linear growth occurs we give the constant of proportionality as a function of the signal velocities …


Conditional Tests On Basins Of Attraction With Finite Fields, Ian H. Dinwoodie Mar 2014

Conditional Tests On Basins Of Attraction With Finite Fields, Ian H. Dinwoodie

Mathematics and Statistics Faculty Publications and Presentations

An iterative method is given for computing the polynomials that vanish on the basin of attraction of a steady state in discrete polynomial dynamics with finite field coefficients. The algorithm is applied to dynamics of a T cell survival network where it is used to compare transition maps conditional on a basin of attraction.


Regularity Of Mediatrices In Surfaces, Pilar Herreros, Mario Ponce, J. J. P. Veerman Jan 2014

Regularity Of Mediatrices In Surfaces, Pilar Herreros, Mario Ponce, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

For distinct points p and q in a two-dimensional Riemannian manifold, one defines their mediatrix Lpq as the set of equidistant points to p and q. It is known that mediatrices have a cell decomposition consisting of a finite number of branch points connected by Lipschitz curves. This paper establishes additional geometric regularity properties of mediatrices. We show that mediatrices have the radial linearizability property, which implies that at each point they have a geometrically defined derivative in the branching directions. Also, we study the particular case of mediatrices on spheres, by showing that they are Lipschitz simple closed curves …


A Second Elasticity Element Using The Matrix Bubble, Jay Gopalakrishnan, Johnny Guzmán Jan 2011

A Second Elasticity Element Using The Matrix Bubble, Jay Gopalakrishnan, Johnny Guzmán

Mathematics and Statistics Faculty Publications and Presentations

We presented a family of finite elements that use a polynomial space augmented by certain matrix bubbles in Cockburn et al. (2010) A new elasticity element made for enforcing weak stress symmetry. Math. Comput., 79, 1331–1349 . In this sequel we exhibit a second family of elements that use the same matrix bubble. This second element uses a stress space smaller than the first while maintaining the same space for rotations (which are the Lagrange multipliers corresponding to a weak symmetry constraint). The space of displacements is of one degree less than the first method. The analysis, while similar to …


Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh Jan 2011

Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh

Mathematics and Statistics Faculty Publications and Presentations

We construct finite element projectors that can be applied to functions with low regularity. These projectors are continuous in a weighted norm arising naturally when modeling devices with axial symmetry. They have important commuting diagram properties needed for finite element analysis. As an application, we use the projectors to prove quasioptimal convergence for the edge finite element approximation of the axisymmetric time-harmonic Maxwell equations on nonsmooth domains. Supplementary numerical investigations on convergence deterioration at high wavenumbers and near Maxwell eigenvalues and are also reported.


Symmetric Nonconforming Mixed Finite Elements For Linear Elasticity, Jay Gopalakrishnan, Johnny Guzmán Jan 2011

Symmetric Nonconforming Mixed Finite Elements For Linear Elasticity, Jay Gopalakrishnan, Johnny Guzmán

Mathematics and Statistics Faculty Publications and Presentations

We present a family of mixed methods for linear elasticity that yield exactly symmetric, but only weakly conforming, stress approximations. The method is presented in both two and three dimensions (on triangular and tetrahedral meshes). The method is efficiently implementable by hybridization. The degrees of freedom of the Lagrange multipliers, which approximate the displacements at the faces, solve a symmetric positive-definite system. The design and analysis of this method is motivated by a new set of unisolvent degrees of freedom for symmetric polynomial matrices. These new degrees of freedom are also used to give a new simple calculation of the …


Analysis Of The Dpg Method For The Poisson Equation, Leszek Demkowicz, Jay Gopalakrishnan Jan 2011

Analysis Of The Dpg Method For The Poisson Equation, Leszek Demkowicz, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

We give an error analysis of the recently developed DPG method applied to solve the Poisson equation and a convection-dffusion problem. We prove that the method is quasioptimal. Error estimates in terms of both the mesh size h and the polynomial degree p (for various element shapes) can be derived from our results. Results of extensive numerical experiments are also presented.


Analysis Of Hdg Methods For Stokes Flow, Bernardo Cockburn, Jay Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, Francisco-Javier Sayas Jan 2011

Analysis Of Hdg Methods For Stokes Flow, Bernardo Cockburn, Jay Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, Francisco-Javier Sayas

Mathematics and Statistics Faculty Publications and Presentations

In this paper, we analyze a hybridizable discontinuous Galerkin method for numerically solving the Stokes equations. The method uses polynomials of degree $ k$ for all the components of the approximate solution of the gradient-velocity-pressure formulation. The novelty of the analysis is the use of a new projection tailored to the very structure of the numerical traces of the method. It renders the analysis of the projection of the errors very concise and allows us to see that the projection of the error in the velocity superconverges. As a consequence, we prove that the approximations of the velocity gradient, the …


A Class Of Discontinuous Petrov–Galerkin Methods. Part Iv: The Optimal Test Norm And Time-Harmonic Wave Propagation In 1d., Jeffrey Zitelli, Leszek Demkowicz, Jay Gopalakrishnan, D. Pardo, V. M. Calo Oct 2010

A Class Of Discontinuous Petrov–Galerkin Methods. Part Iv: The Optimal Test Norm And Time-Harmonic Wave Propagation In 1d., Jeffrey Zitelli, Leszek Demkowicz, Jay Gopalakrishnan, D. Pardo, V. M. Calo

Mathematics and Statistics Faculty Publications and Presentations

The phase error, or the pollution effect in the finite element solution of wave propagation problems, is a well known phenomenon that must be confronted when solving problems in the high-frequency range. This paper presents a new method with no phase errors for one-dimensional (1D) time-harmonic wave propagation problems using new ideas that hold promise for the multidimensional case. The method is constructed within the framework of the discontinuous Petrov–Galerkin (DPG) method with optimal test functions. We have previously shown that such methods select solutions that are the best possible approximations in an energy norm dual to any selected test …


Hybridization And Postprocessing Techniques For Mixed Eigenfunctions, Bernardo Cockburn, Jay Gopalakrishnan, F. Li, Ngoc Cuong Nguyen, Jaume Peraire Jan 2010

Hybridization And Postprocessing Techniques For Mixed Eigenfunctions, Bernardo Cockburn, Jay Gopalakrishnan, F. Li, Ngoc Cuong Nguyen, Jaume Peraire

Mathematics and Statistics Faculty Publications and Presentations

We introduce hybridization and postprocessing techniques for the Raviart–Thomas approximation of second-order elliptic eigenvalue problems. Hybridization reduces the Raviart–Thomas approximation to a condensed eigenproblem. The condensed eigenproblem is nonlinear, but smaller than the original mixed approximation. We derive multiple iterative algorithms for solving the condensed eigenproblem and examine their interrelationships and convergence rates. An element-by-element postprocessing technique to improve accuracy of computed eigenfunctions is also presented. We prove that a projection of the error in the eigenspace approximation by the mixed method (of any order) superconverges and that the postprocessed eigenfunction approximations converge faster for smooth eigenfunctions. Numerical experiments using …


Multigrid In A Weighted Space Arising From Axisymmetric Electromagnetics, Dylan M. Copeland, Jay Gopalakrishnan, Minah Oh Jan 2010

Multigrid In A Weighted Space Arising From Axisymmetric Electromagnetics, Dylan M. Copeland, Jay Gopalakrishnan, Minah Oh

Mathematics and Statistics Faculty Publications and Presentations

Consider the space of two-dimensional vector functions whose components and curl are square integrable with respect to the degenerate weight given by the radial variable. This space arises naturally when modeling electromagnetic problems under axial symmetry and performing a dimension reduction via cylindrical coordinates. We prove that if the original three-dimensional domain is convex then the multigrid Vcycle applied to the inner product in this space converges, provided certain modern smoothers are used. For the convergence analysis, we first prove several intermediate results, e.g., the approximation properties of a commuting projector in weighted norms, and a superconvergence estimate for a …


A Projection-Based Error Analysis Of Hdg Methods, Jay Gopalakrishnan, Bernardo Cockburn, Francisco-Javier Sayas Jan 2010

A Projection-Based Error Analysis Of Hdg Methods, Jay Gopalakrishnan, Bernardo Cockburn, Francisco-Javier Sayas

Mathematics and Statistics Faculty Publications and Presentations

We introduce a new technique for the error analysis of hybridizable discontinuous Galerkin (HDG) methods. The technique relies on the use of a new projection whose design is inspired by the form of the numerical traces of the methods. This renders the analysis of the projections of the discretization errors simple and concise. By showing that these projections of the errors are bounded in terms of the distance between the solution and its projection, our studies of influence of the stabilization parameter are reduced to local analyses of approximation by the projection. We illustrate the technique on a specific HDG …


A Class Of Discontinuous Petrov–Galerkin Methods. Ii. Optimal Test Functions, Leszek Demkowicz, Jay Gopalakrishnan Jan 2010

A Class Of Discontinuous Petrov–Galerkin Methods. Ii. Optimal Test Functions, Leszek Demkowicz, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

We lay out a program for constructing discontinuous Petrov–Galerkin (DPG) schemes having test function spaces that are automatically computable to guarantee stability. Given a trial space, a DPG discretization using its optimal test space counterpart inherits stability from the well posedness of the undiscretized problem. Although the question of stable test space choice had attracted the attention of many previous authors, the novelty in our approach lies in the fact we identify a discontinuous Galerkin (DG) framework wherein test functions, arbitrarily close to the optimal ones, can be locally computed. The idea is presented abstractly and its feasibility illustrated through …


A Class Of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation, Leszek Demkowicz, Jay Gopalakrishnan Jan 2010

A Class Of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation, Leszek Demkowicz, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

Considering a simple model transport problem, we present a new finite element method. While the new method fits in the class of discontinuous Galerkin (DG) methods, it differs from standard DG and streamline diffusion methods, in that it uses a space of discontinuous trial functions tailored for stability. The new method, unlike the older approaches, yields optimal estimates for the primal variable in both the element size h and polynomial degree p, and outperforms the standard upwind DG method.