Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Environmental Sciences

Organics In Environmental Ices: Sources, Chemistry, And Impacts, V. F. Mcneill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, Marcelo I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, D. Voisin Oct 2012

Organics In Environmental Ices: Sources, Chemistry, And Impacts, V. F. Mcneill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, Marcelo I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, D. Voisin

Chemistry Faculty Publications

The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before an accurate model of transformations and transport of organic species in the cryosphere will be possible. For example, more information is needed regarding …


Surficial Redistribution Of Fallout 131iodine In A Small Temperate Catchment, Joshua D. Landis, Nathan T. Hamm, Carl E. Renshaw, W. Brian Dade, Francis J. Magilligan, John D. Gartner Mar 2012

Surficial Redistribution Of Fallout 131iodine In A Small Temperate Catchment, Joshua D. Landis, Nathan T. Hamm, Carl E. Renshaw, W. Brian Dade, Francis J. Magilligan, John D. Gartner

Dartmouth Scholarship

Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it …