Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Environmental Sciences

Delayed Coastal Inundations Caused By Ocean Dynamics Post-Hurricane Matthew, Kyungmin Park, Emanuele Di Lorenzo, Yinglong J. Zhang, Tal Ezer, Fei Yi Jan 2024

Delayed Coastal Inundations Caused By Ocean Dynamics Post-Hurricane Matthew, Kyungmin Park, Emanuele Di Lorenzo, Yinglong J. Zhang, Tal Ezer, Fei Yi

CCPO Publications

Post Hurricane Abnormal Water Level (PHAWL) poses a persistent inundation threat to coastal communities, yet unresolved knowledge gaps exist regarding its spatiotemporal impacts and causal mechanisms. Using a high-resolution coastal model with a set of observations, we find that the PHAWLs are up to 50 cm higher than the normal water levels for several weeks and cause delayed inundations around residential areas of the U.S. Southeast Coast (USSC). Numerical experiments reveal that while atmospheric forcing modulates the coastal PHAWLs, ocean dynamics primarily driven by the Gulf Stream control the mean component and duration of the shelf-scale PHAWLs. Because of the …


A Demonstration Of A Simple Methodology Of Flood Prediction For A Coastal City Under Threat Of Sea Level Rise: The Case Of Norfolk, Va, Usa, Tal Ezer Sep 2022

A Demonstration Of A Simple Methodology Of Flood Prediction For A Coastal City Under Threat Of Sea Level Rise: The Case Of Norfolk, Va, Usa, Tal Ezer

CCPO Publications

Many coastal cities around the world are at risk of increased flooding due to sea level rise (SLR), so here a simple flood prediction method is demonstrated for one city at risk, Norfolk, VA, on the U.S. East Coast. The probability of future flooding is estimated by extending observed hourly water level for 1927–2021 into hourly estimates until 2100. Unlike most other flood prediction methods, the approach here does not use any predetermined probability distribution function of extreme events, and instead a random sampling of past data represents tides and storm surges. The probability of flooding for 3 different flood …


The Increased Risk Of Flooding In Hampton Roads: On The Roles Of Sea Level Rise, Storm Surges, Hurricanes, And The Gulf Stream, Tal Ezer Jan 2018

The Increased Risk Of Flooding In Hampton Roads: On The Roles Of Sea Level Rise, Storm Surges, Hurricanes, And The Gulf Stream, Tal Ezer

CCPO Publications

The impact of sea level rise on increased tidal flooding and storm surges in the Hampton Roads region is demonstrated, using ~90 years of water level measurements in Norfolk, Virginia. Impacts from offshore storms and variations in the Gulf Stream (GS) are discussed as well, in view of recent studies that show that weakening in the flow of the GS (daily, interannually, or decadal) is often related to elevated water levels along the U.S. East Coast. Two types of impacts from hurricanes on flooding in Hampton Roads are demonstrated here. One type is when a hurricane like Isabel (2003) makes …


Sea Level Acceleration In The China Seas, Yongcun Cheng, Tal Ezer, Benjamin D. Hamlington Jan 2016

Sea Level Acceleration In The China Seas, Yongcun Cheng, Tal Ezer, Benjamin D. Hamlington

CCPO Publications

While global mean sea level rise (SLR) and acceleration (SLA) are indicators of climate change and are informative regarding the current state of the climate, assessments of regional and local SLR are essential for policy makers responding to, and preparing for, changes in sea level. In this work, three acceleration detection techniques are used to demonstrate the robust SLA in the China Seas. Interannual to multidecadal sea level variations (periods >2 years), which are mainly related to natural internal climate variability and significantly affect estimation of sea level acceleration, are removed with empirical mode decomposition (EMD) analysis prior to the …


Updating Maryland's Sea-Level Rise Projections, Donald F. Boesch, Larry P. Atkinson, William C. Boicourt, John D. Boon, Donald R. Cahoon, Robert A. Dalrymple, Tal Ezer, Benjamin P. Horton, Zoe P. Johnson, Robert E. Kopp, Ming Li, Richard H. Moss, Adam Parris, Christopher K. Sommerfield Jun 2013

Updating Maryland's Sea-Level Rise Projections, Donald F. Boesch, Larry P. Atkinson, William C. Boicourt, John D. Boon, Donald R. Cahoon, Robert A. Dalrymple, Tal Ezer, Benjamin P. Horton, Zoe P. Johnson, Robert E. Kopp, Ming Li, Richard H. Moss, Adam Parris, Christopher K. Sommerfield

CCPO Publications

With its 3,100 miles of tidal shoreline and low-lying rural and urban lands, "The Free State" is one of the most vulnerable to sea-level rise. Historically, Marylanders have long had to contend with rising water levels along its Chesapeake Bay and Atlantic Ocean and coastal bay shores. Shorelines eroded and low-relief lands and islands, some previously inhabited, were inundated. Prior to the 20th century, this was largely due to the slow sinking of the land since Earth’s crust is still adjusting to the melting of large masses of ice following the last glacial period. Over the 20th century, however, the …