Open Access. Powered by Scholars. Published by Universities.®

Earth Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Earth Sciences

Effects Of Wetting Agents And Approaching Anode On Lead Migration In Electrokinetic Soil Remediation, Yee Sern Ng, Bhaskar Sen Gupta, Mohd Ali Hashim Jan 2014

Effects Of Wetting Agents And Approaching Anode On Lead Migration In Electrokinetic Soil Remediation, Yee Sern Ng, Bhaskar Sen Gupta, Mohd Ali Hashim

Ng Yee-Sern

Approaching anode is one of the enhancement techniques in electrokinetic soil remediation. This technique is reported to give promising migration for heavy metals under shorter treatment time and at lower cost in comparison to normal fixed anode system. In the present study, the effectiveness of fixed anode and approaching anode techniques in electrokinetic soil remediation for lead migration under different types of wetting agents (0.01M NaNO3 and 0.1M citric acid) was investigated. The study showed that the use of citric acid enhanced lead migration in comparison to NaNO3. For NaNO3 tests, lead was found to accumulate in the middle of …


Paleolimnological Analysis Of The History Of Metals Contamination In The Great Salt Lake, Utah, Wayne A. Wurtsbaugh, Katrina Moser, Peter R. Leavitt Jan 2014

Paleolimnological Analysis Of The History Of Metals Contamination In The Great Salt Lake, Utah, Wayne A. Wurtsbaugh, Katrina Moser, Peter R. Leavitt

Wayne A. Wurtsbaugh

Three sediment cores from the Great Salt Lake were analyzed to determine the magnitude and timing for the deposition of 21 metal contaminants. In the main lake (Gilbert Bay) concentrations of copper, lead, zinc, cadmium, silver, molybdenum, tin, mercury and others began increasing in the sediments in the late 1800s or early 1900s and peaked in the 1950s. These increases were coincident with increases in mining and smelting activities for these metals in Utah. Contamination indices in the 1950s were 20-60 fold above background concentrations for silver, copper, lead and molybdenum, and <15-fold for most other metals. Since the 1950s, concentrations of most metals in the sediments have decreased 2-5 fold coincident with decreases in mining and improved smelting technologies. Nevertheless concentrations for many metals in surficial sediments are still above acceptable criteria established for freshwater ecosystems. In contrast to most metals, concentrations of selenium and arsenic were stable or increasing slightly in the Gilbert Bay sediments. In a coring site located in Farmington Bay near an EPA Superfund Site discharge canal, concentrations of metals were high and showed no indication of decreasing in more recent sediments. Surficial sediments from additional sites in the Great Salt Lake indicated that metals were more concentrated towards the southern end of the lake where the primary sources of contamination were located.