Open Access. Powered by Scholars. Published by Universities.®

Earth Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Geoscience Faculty Research

Articles 1 - 2 of 2

Full-Text Articles in Earth Sciences

Initial Acoustoelastic Measurements In Olivine: Investigating The Effect Of Stress On P- And S-Wave Velocities, Taryn K. Traylor, Pamela C. Burnley, M. L. Whitaker Oct 2021

Initial Acoustoelastic Measurements In Olivine: Investigating The Effect Of Stress On P- And S-Wave Velocities, Taryn K. Traylor, Pamela C. Burnley, M. L. Whitaker

Geoscience Faculty Research

It is well known that elasticity is a key physical property in the determination of the structure and composition of the Earth and provides critical information for the interpretation of seismic data. This study investigates the stress-induced variation in elastic wave velocities, known as the acoustoelastic effect, in San Carlos olivine. A recently developed experimental ultrasonic acoustic system, the Directly Integrated Acoustic System Combined with Pressure Experiments (DIASCoPE), was used with the D-DIA multi-anvil apparatus to transmit ultrasonic sound waves and collect the reflections. We use the DIASCoPE to obtain longitudinal (P) and shear (S) elastic wave velocities from San …


Implications Of An Improved Water Equation Of State For Water-Rich Planets, Chenling Huang, David R. Rice, Zachary M. Grande, Dean Smith, John H. Boisvert, Oliver Tschauner, Ashkan Salamat, Jason Steffen Mar 2021

Implications Of An Improved Water Equation Of State For Water-Rich Planets, Chenling Huang, David R. Rice, Zachary M. Grande, Dean Smith, John H. Boisvert, Oliver Tschauner, Ashkan Salamat, Jason Steffen

Geoscience Faculty Research

Water (H2O), in all forms, is an important constituent in planetary bodies, controlling habitability and influencing geological activity. Under conditions found in the interior of many planets, as the pressure increases, the H-bonds in water gradually weaken and are replaced by ionic bonds. Recent experimental measurements of the water equation of state (EOS) showed both a new phase of H-bonded water ice, ice-VIIt, and a relatively low transition pressure just above 30 GPa to ionic bonded ice-X, which has a bulk modulus 2.5 times larger. The higher bulk modulus of ice-X produces larger planets for a given mass, thereby either …