Open Access. Powered by Scholars. Published by Universities.®

Data Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 20 of 20

Full-Text Articles in Data Science

Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu May 2024

Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu

McKelvey School of Engineering Theses & Dissertations

With the escalating prevalence of dementia, particularly Alzheimer's Disease (AD), the need for early and precise diagnostic techniques is rising. This study delves into the comparative efficacy of Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and T1-weighted Magnetic Resonance Imaging (MRI) in diagnosing AD, where the integration of multimodal models is becoming a trend. Leveraging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we employed linear Support Vector Machines (SVM) to assess the diagnostic potential of these modalities, both individually and in combination, within the AD continuum. Our analysis, under the A/T/N framework's 'N' category, reveals that FDG-PET consistently outperforms T1w-MRI across …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


2d Respiratory Sound Analysis To Detect Lung Abnormalities, Rafia Sharmin Alice, Kc Santosh Feb 2023

2d Respiratory Sound Analysis To Detect Lung Abnormalities, Rafia Sharmin Alice, Kc Santosh

SDSU Data Science Symposium

Abstract. In this paper, we analyze deep visual features from 2D data representation(s) of the respiratory sound to detect evidence of lung abnormalities. The primary motivation behind this is that visual cues are more important in decision-making than raw data (lung sound). Early detection and prompt treatments are essential for any future possible respiratory disorders, and respiratory sound is proven to be one of the biomarkers. In contrast to state-of-the-art approaches, we aim at understanding/analyzing visual features using our Convolutional Neural Networks (CNN) tailored Deep Learning Models, where we consider all possible 2D data such as Spectrogram, Mel-frequency Cepstral Coefficients …


Breast Density Classification Using Deep Learning, Conrad Thomas Testagrose Jan 2023

Breast Density Classification Using Deep Learning, Conrad Thomas Testagrose

UNF Graduate Theses and Dissertations

Breast density screenings are an accepted means to determine a patient's predisposed risk of breast cancer development. Although the direct correlation is not fully understood, breast cancer risk increases with higher levels of mammographic breast density. Radiologists visually assess a patient's breast density using mammogram images and assign a density score based on four breast density categories outlined by the Breast Imaging and Reporting Data Systems (BI-RADS). There have been efforts to develop automated tools that assist radiologists with increasing workloads and to help reduce the intra- and inter-rater variability between radiologists. In this thesis, I explored two deep-learning-based approaches …


The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah Dec 2022

The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah

Electronic Theses and Dissertations

Computational technologies can contribute to the modeling and simulation of the biological environments and activities towards achieving better interpretations, analysis, and understanding. With the emergence of digital pathology, we can observe an increasing demand for more innovative, effective, and efficient computational models. Under the umbrella of artificial intelligence, deep learning mimics the brain’s way in learn complex relationships through data and experiences. In the field of bioimage analysis, models usually comprise discriminative approaches such as classification and segmentation tasks. In this thesis, we study how we can use generative AI models to improve bioimage analysis tasks using Generative Adversarial Networks …


Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre Oct 2022

Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre

Doctoral Dissertations

Many neurological diseases cause motor impairments that limit autonomy and reduce health-related quality of life. Upper-limb motor impairments, in particular, significantly hamper the performance of essential activities of daily living, such as eating, bathing, and changing clothing. Assessment of impairment is necessary for tracking disease progression, measuring the efficacy of interventions, and informing clinical decision making. Impairment is currently assessed by trained clinicians using semi-quantitative rating scales that are limited by their reliance on subjective, visual assessments. Furthermore, existing scales are often burdensome to administer and do not capture patients' motor performance in home and community settings, resulting in a …


Predicting Insulin Pump Therapy Settings, Riccardo L. Ferraro, David Grijalva, Alex Trahan Sep 2022

Predicting Insulin Pump Therapy Settings, Riccardo L. Ferraro, David Grijalva, Alex Trahan

SMU Data Science Review

Millions of people live with diabetes worldwide [7]. To mitigate some of the many symptoms associated with diabetes, an estimated 350,000 people in the United States rely on insulin pumps [17]. For many of these people, how effectively their insulin pump performs is the difference between sleeping through the night and a life threatening emergency treatment at a hospital. Three programmed insulin pump therapy settings governing effective insulin pump function are: Basal Rate (BR), Insulin Sensitivity Factor (ISF), and Carbohydrate Ratio (ICR). For many people using insulin pumps, these therapy settings are often not correct, given their physiological needs. While …


A Machine Learning Framework For Identifying Molecular Biomarkers From Transcriptomic Cancer Data, Md Abdullah Al Mamun Mar 2022

A Machine Learning Framework For Identifying Molecular Biomarkers From Transcriptomic Cancer Data, Md Abdullah Al Mamun

FIU Electronic Theses and Dissertations

Cancer is a complex molecular process due to abnormal changes in the genome, such as mutation and copy number variation, and epigenetic aberrations such as dysregulations of long non-coding RNA (lncRNA). These abnormal changes are reflected in transcriptome by turning oncogenes on and tumor suppressor genes off, which are considered cancer biomarkers.

However, transcriptomic data is high dimensional, and finding the best subset of genes (features) related to causing cancer is computationally challenging and expensive. Thus, developing a feature selection framework to discover molecular biomarkers for cancer is critical.

Traditional approaches for biomarker discovery calculate the fold change for each …


Volitional Control Of Lower-Limb Prosthesis With Vision-Assisted Environmental Awareness, S M Shafiul Hasan Mar 2022

Volitional Control Of Lower-Limb Prosthesis With Vision-Assisted Environmental Awareness, S M Shafiul Hasan

FIU Electronic Theses and Dissertations

Early and reliable prediction of user’s intention to change locomotion mode or speed is critical for a smooth and natural lower limb prosthesis. Meanwhile, incorporation of explicit environmental feedback can facilitate context aware intelligent prosthesis which allows seamless operation in a variety of gait demands. This dissertation introduces environmental awareness through computer vision and enables early and accurate prediction of intention to start, stop or change speeds while walking. Electromyography (EMG), Electroencephalography (EEG), Inertial Measurement Unit (IMU), and Ground Reaction Force (GRF) sensors were used to predict intention to start, stop or increase walking speed. Furthermore, it was investigated whether …


Representation Learning For Chemical Activity Predictions, Mohamed S. Ayed Feb 2022

Representation Learning For Chemical Activity Predictions, Mohamed S. Ayed

Dissertations, Theses, and Capstone Projects

Computational prediction of a phenotypic response upon the chemical perturbation on a biological system plays an important role in drug discovery and many other applications. Chemical fingerprints derived from chemical structures are a widely used feature to build machine learning models. However, the fingerprints ignore the biological context, thus, they suffer from several problems such as the activity cliff and curse of dimensionality. Fundamentally, the chemical modulation of biological activities is a multi-scale process. It is the genome-wide chemical-target interactions that modulate chemical phenotypic responses. Thus, the genome-scale chemical-target interaction profile will more directly correlate with in vitro and in …


Universal Design In Bci: Deep Learning Approaches For Adaptive Speech Brain-Computer Interfaces, Srdjan Lesaja Jan 2022

Universal Design In Bci: Deep Learning Approaches For Adaptive Speech Brain-Computer Interfaces, Srdjan Lesaja

Theses and Dissertations

In the last two decades, there have been many breakthrough advancements in non-invasive and invasive brain-computer interface (BCI) systems. However, the majority of BCI model designs still follow a paradigm whereby neural signals are preprocessed and task-related features extracted using static, and generally customized, data-independent designs. Such BCI designs commonly optimize narrow task performance over generalizability, adaptability, and robustness, which is not well suited to meeting individual user needs. If one day BCIs are to be capable of decoding our higher-order cognitive commands and conceptual maps, their designs will need to be adaptive architectures that will evolve and grow in …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice May 2021

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


Optimal Analytical Methods For High Accuracy Cardiac Disease Classification And Treatment Based On Ecg Data, Jianwei Zheng May 2021

Optimal Analytical Methods For High Accuracy Cardiac Disease Classification And Treatment Based On Ecg Data, Jianwei Zheng

Computational and Data Sciences (PhD) Dissertations

This work constitutes six projects. In the first project, a newly inaugurated research database for 12-lead electrocardiogram signals was created under the auspices of Chapman University and Shaoxing People's Hospital (Shaoxing Hospital Zhejiang University School of Medicine). This database aims to enable the scientific community in conducting new studies on arrhythmia and other cardiovascular conditions. In the second project, we created a new 12-lead ECG database under the auspices of Chapman University and Ningbo First Hospital of Zhejiang University that aims to provide high quality data enabling detection of the distinctions between idiopathic ventricular arrhythmia from right ventricular outflow tract …


Using Deep Learning To Analyze Materials In Medical Images, Carson Molder May 2021

Using Deep Learning To Analyze Materials In Medical Images, Carson Molder

Computer Science and Computer Engineering Undergraduate Honors Theses

Modern deep learning architectures have become increasingly popular in medicine, especially for analyzing medical images. In some medical applications, deep learning image analysis models have been more accurate at predicting medical conditions than experts. Deep learning has also been effective for material analysis on photographs. We aim to leverage deep learning to perform material analysis on medical images. Because material datasets for medicine are scarce, we first introduce a texture dataset generation algorithm that automatically samples desired textures from annotated or unannotated medical images. Second, we use a novel Siamese neural network called D-CNN to predict patch similarity and build …


3d Architectural Analysis Of Neurons, Astrocytes, Vasculature & Nuclei In The Motor And Somatosensory Murine Cortical Columns, Jared Leichner Jul 2020

3d Architectural Analysis Of Neurons, Astrocytes, Vasculature & Nuclei In The Motor And Somatosensory Murine Cortical Columns, Jared Leichner

FIU Electronic Theses and Dissertations

Characterization of the complex cortical structure of the brain at a cellular level is a fundamental goal of neuroscience which can provide a better understanding of both normal function as well as disease state progression. Many challenges exist however when carrying out this form of analysis. Immunofluorescent staining is a key technique for revealing 3-dimensional structure, but subsequent fluorescence microscopy is limited by the quantity of simultaneous targets that can be labeled and intrinsic lateral and isotropic axial point-spread function (PSF) blurring during the imaging process in a spectral and depth-dependent manner. Even after successful staining, imaging and optical deconvolution, …


Utilizing Neural Networks And Wearables To Quantify Hip Joint Angles And Moments During Walking And Stair Ascent, Megan V. Mccabe Jun 2020

Utilizing Neural Networks And Wearables To Quantify Hip Joint Angles And Moments During Walking And Stair Ascent, Megan V. Mccabe

ENGS 88 Honors Thesis (AB Students)

Wearable sensors were leveraged to develop two methods for computing hip joint angles and moments during walking and stair ascent that are more portable than the gold standard. The Insole-Standard (I-S) approach replaced force plates with force-measuring insoles and achieved results that match the curvature of results from similar studies. Peaks in I-S kinetic results are high due to error induced by applying the ground reaction force to the talus. The Wearable-ANN (W-A) approach combines wearables with artificial neural networks to compute the same results. Compared against the I-S, the W-A approach performs well (average rRMSE = 18%, R2 …


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for …


Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders May 2020

Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders

Dissertations & Theses (Open Access)

Prostate cancer is the second most common cancer in men and the second-leading cause of cancer death in men. Brachytherapy is a highly effective treatment option for prostate cancer, and is the most cost-effective initial treatment among all other therapeutic options for low to intermediate risk patients of prostate cancer. In low-dose-rate (LDR) brachytherapy, verifying the location of the radioactive seeds within the prostate and in relation to critical normal structures after seed implantation is essential to ensuring positive treatment outcomes.

One current gap in knowledge is how to simultaneously image the prostate, surrounding anatomy, and radioactive seeds within the …


Information Extraction From Primary Care Visits To Support Patient-Provider Interactions, Daniel Baruch Gutstein Nov 2019

Information Extraction From Primary Care Visits To Support Patient-Provider Interactions, Daniel Baruch Gutstein

College of Computing and Digital Media Dissertations

The extent of electronic health record systems usage in clinical settings has affected the dynamic between clinicians and patients and has thus been connected to physician morale and the quality of care patients receive. Recent research has also uncovered a correlation between physician burnout and negative physician attitudes electronic health record systems. In order to begin exploring the nature of the relationship between electronic health record usage, physician burnout, and patient care, it is necessary to first analyze patient-provider interactions within the context of verbal features such as turn-taking and non-verbal features such as eye-contact. While previous works have sought …


Adaptive Graph Construction For Isomap Manifold Learning, Loc Tran, Zezhong Zheng, Guoquing Zhou, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.) Jan 2015

Adaptive Graph Construction For Isomap Manifold Learning, Loc Tran, Zezhong Zheng, Guoquing Zhou, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.)

Electrical & Computer Engineering Faculty Publications

Isomap is a classical manifold learning approach that preserves geodesic distance of nonlinear data sets. One of the main drawbacks of this method is that it is susceptible to leaking, where a shortcut appears between normally separated portions of a manifold. We propose an adaptive graph construction approach that is based upon the sparsity property of the ℓ1 norm. The ℓ1 enhanced graph construction method replaces k-nearest neighbors in the classical approach. The proposed algorithm is first tested on the data sets from the UCI data base repository which showed that the proposed approach performs better than …