Open Access. Powered by Scholars. Published by Universities.®

Systems Architecture Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2021

Discipline
Institution
Keyword
Publication

Articles 1 - 11 of 11

Full-Text Articles in Systems Architecture

Automated Discovery Of Network Cameras In Heterogeneous Web Pages, Ryan Dailey, Aniesh Chawla, Andrew Liu, Sripath Mishra, Ling Zhang, Josh Majors, Yung-Hisang Lu, George K. Thiruvathukal Oct 2021

Automated Discovery Of Network Cameras In Heterogeneous Web Pages, Ryan Dailey, Aniesh Chawla, Andrew Liu, Sripath Mishra, Ling Zhang, Josh Majors, Yung-Hisang Lu, George K. Thiruvathukal

Computer Science: Faculty Publications and Other Works

Reduction in the cost of Network Cameras along with a rise in connectivity enables entities all around the world to deploy vast arrays of camera networks. Network cameras offer real-time visual data that can be used for studying traffic patterns, emergency response, security, and other applications. Although many sources of Network Camera data are available, collecting the data remains difficult due to variations in programming interface and website structures. Previous solutions rely on manually parsing the target website, taking many hours to complete. We create a general and automated solution for aggregating Network Camera data spread across thousands of uniquely …


Neural Architecture Search Of Spd Manifold Networks, R.S. Sukthanker, Zhiwu Huang, S. Kumar, E. G. Endsjo, Y. Wu, Gool L. Van Aug 2021

Neural Architecture Search Of Spd Manifold Networks, R.S. Sukthanker, Zhiwu Huang, S. Kumar, E. G. Endsjo, Y. Wu, Gool L. Van

Research Collection School Of Computing and Information Systems

In this paper, we propose a new neural architecture search (NAS) problem of Symmetric Positive Definite (SPD) manifold networks, aiming to automate the design of SPD neural architectures. To address this problem, we first introduce a geometrically rich and diverse SPD neural architecture search space for an efficient SPD cell design. Further, we model our new NAS problem with a one-shot training process of a single supernet. Based on the supernet modeling, we exploit a differentiable NAS algorithm on our relaxed continuous search space for SPD neural architecture search. Statistical evaluation of our method on drone, action, and emotion recognition …


Trust Models And Risk In The Internet Of Things, Jeffrey Hemmes Apr 2021

Trust Models And Risk In The Internet Of Things, Jeffrey Hemmes

Regis University Faculty Publications

The Internet of Things (IoT) is envisaged to be a large-scale, massively heterogeneous ecosystem of devices with varying purposes and capabilities. While architectures and frameworks have focused on functionality and performance, security is a critical aspect that must be integrated into system design. This work proposes a method of risk assessment of devices using both trust models and static capability profiles to determine the level of risk each device poses. By combining the concepts of trust and secure device fingerprinting, security mechanisms can be more efficiently allocated across networked IoT devices. Simultaneously, devices can be allowed a greater degree of …


Lecture 05: The Convergence Of Big Data And Extreme Computing, David Keyes Apr 2021

Lecture 05: The Convergence Of Big Data And Extreme Computing, David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Lecture 12: Recent Advances In Time Integration Methods And How They Can Enable Exascale Simulations, Carol S. Woodward Apr 2021

Lecture 12: Recent Advances In Time Integration Methods And How They Can Enable Exascale Simulations, Carol S. Woodward

Mathematical Sciences Spring Lecture Series

To prepare for exascale systems, scientific simulations are growing in physical realism and thus complexity. This increase often results in additional and changing time scales. Time integration methods are critical to efficient solution of these multiphysics systems. Yet, many large-scale applications have not fully embraced modern time integration methods nor efficient software implementations. Hence, achieving temporal accuracy with new and complex simulations has proved challenging. We will overview recent advances in time integration methods, including additive IMEX methods, multirate methods, and parallel-in-time approaches, expected to help realize the potential of exascale systems on multiphysics simulations. Efficient execution of these methods …


Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin Mar 2021

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin

FIU Electronic Theses and Dissertations

The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 …


Neural Architecture Search As Sparse Supernet, Y. Wu, A. Liu, Zhiwu Huang, S. Zhang, Gool L. Van Feb 2021

Neural Architecture Search As Sparse Supernet, Y. Wu, A. Liu, Zhiwu Huang, S. Zhang, Gool L. Van

Research Collection School Of Computing and Information Systems

This paper aims at enlarging the problem of Neural Architecture Search (NAS) from Single-Path and Multi-Path Search to automated Mixed-Path Search. In particular, we model the NAS problem as a sparse supernet using a new continuous architecture representation with a mixture of sparsity constraints. The sparse supernet enables us to automatically achieve sparsely-mixed paths upon a compact set of nodes. To optimize the proposed sparse supernet, we exploit a hierarchical accelerated proximal gradient algorithm within a bi-level optimization framework. Extensive experiments on Convolutional Neural Network and Recurrent Neural Network search demonstrate that the proposed method is capable of searching for …


Reduced Multiplicative Complexity Discrete Cosine Transform (Dct) Circuitry, Sirani Kanchana Mututhanthrige Perera Jan 2021

Reduced Multiplicative Complexity Discrete Cosine Transform (Dct) Circuitry, Sirani Kanchana Mututhanthrige Perera

Publications

System and techniques for reduced multiplicative complex­ity discrete cosine transform (DCT) circuitry are described herein. An input data set can be received and, upon the input data set, a self-recursive DCT technique can be performed to produce a transformed data set. Here, the self-recursive DCT technique is based on a product of factors of a specified type of DCT technique. Recursive components of the technique are of the same DCT type as that of the DCT technique. The transformed data set can then be produced to a data con­sumer.


A Survey Of Enabling Technologies For Smart Communities, Amna Iqbal, Stephan Olariu Jan 2021

A Survey Of Enabling Technologies For Smart Communities, Amna Iqbal, Stephan Olariu

Computer Science Faculty Publications

In 2016, the Japanese Government publicized an initiative and a call to action for the implementation of a "Super Smart Society" announced as Society 5.0. The stated goal of Society 5.0 is to meet the various needs of the members of society through the provisioning of goods and services to those who require them, when they are required and in the amount required, thus enabling the citizens to live an active and comfortable life. In spite of its genuine appeal, details of a feasible path to Society 5.0 are conspicuously missing. The first main goal of this survey is to …


Occam Manual, Martin Zwick Jan 2021

Occam Manual, Martin Zwick

Systems Science Faculty Publications and Presentations

Occam is a Discrete Multivariate Modeling (DMM) tool based on the methodology of Reconstructability Analysis (RA). Its typical usage is for analysis of problems involving large numbers of discrete variables. Models are developed which consist of one or more components, which are then evaluated for their fit and statistical significance. Occam can search the lattice of all possible models, or can do detailed analysis on a specific model.

In Variable-Based Modeling (VBM), model components are collections of variables. In State-Based Modeling (SBM), components identify one or more specific states or substates.

Occam provides a web-based interface, which …


On Studying Distributed Machine Learning, Simeon Eberz Jan 2021

On Studying Distributed Machine Learning, Simeon Eberz

Senior Honors Theses

The Internet of Things (IoT) is utilizing Deep Learning (DL) for applications such as voice or image recognition. Processing data for DL directly on IoT edge devices reduces latency and increases privacy. To overcome the resource constraints of IoT edge devices, the computation for DL inference is distributed between a cluster of several devices. This paper explores DL, IoT networks, and a novel framework for distributed processing of DL in IoT clusters. The aim is to facilitate and simplify deployment, testing, and study of a distributed DL system, even without physical devices. The contributions of this paper are a deployment …