Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Programming Languages and Compilers

Evaluation Of Distributed Programming Models And Extensions To Task-Based Runtime Systems, Yu Pei Dec 2022

Evaluation Of Distributed Programming Models And Extensions To Task-Based Runtime Systems, Yu Pei

Doctoral Dissertations

High Performance Computing (HPC) has always been a key foundation for scientific simulation and discovery. And more recently, deep learning models' training have further accelerated the demand of computational power and lower precision arithmetic. In this era following the end of Dennard's Scaling and when Moore's Law seemingly still holds true to a lesser extent, it is not a coincidence that HPC systems are equipped with multi-cores CPUs and a variety of hardware accelerators that are all massively parallel. Coupling this with interconnect networks' speed improvements lagging behind those of computational power increases, the current state of HPC systems is …


Task-Based Runtime Optimizations Towards High Performance Computing Applications, Qinglei Cao Aug 2022

Task-Based Runtime Optimizations Towards High Performance Computing Applications, Qinglei Cao

Doctoral Dissertations

The last decades have witnessed a rapid improvement of computational capabilities in high-performance computing (HPC) platforms thanks to hardware technology scaling. HPC architectures benefit from mainstream advances on the hardware with many-core systems, deep hierarchical memory subsystem, non-uniform memory access, and an ever-increasing gap between computational power and memory bandwidth. This has necessitated continuous adaptations across the software stack to maintain high hardware utilization. In this HPC landscape of potentially million-way parallelism, task-based programming models associated with dynamic runtime systems are becoming more popular, which fosters developers’ productivity at extreme scale by abstracting the underlying hardware complexity.

In this context, …


Using Applications To Guide Data Management For Emerging Memory Technologies, Timothy C. Effler Aug 2020

Using Applications To Guide Data Management For Emerging Memory Technologies, Timothy C. Effler

Doctoral Dissertations

A number of promising new memory technologies, such as non-volatile, storage-class memories and high-bandwidth, on-chip RAMs, are emerging. Since each of these new technologies present tradeoffs distinct from conventional DRAMs, many high performance and scientific computing systems have begun to include multiple tiers of memory storage, each with their own type of devices. To efficiently utilize the available hardware, such systems will need to alter their data management strategies to consider the performance and capabilities provided by each tier. This work aims to understand and increase the effectiveness of application data management for emerging complex memory systems. A key realization …


Automated Program Profiling And Analysis For Managing Heterogeneous Memory Systems, Adam Palmer Howard Dec 2017

Automated Program Profiling And Analysis For Managing Heterogeneous Memory Systems, Adam Palmer Howard

Masters Theses

Many promising memory technologies, such as non-volatile, storage-class memories and high-bandwidth, on-chip RAMs, are beginning to emerge. Since each of these new technologies present tradeoffs distinct from conventional DRAMs, next-generation systems are likely to include multiple tiers of memory storage, each with their own type of devices. To efficiently utilize the available hardware, such systems will need to alter their data management strategies to consider the performance and capabilities provided by each tier.

This work explores a variety of cross-layer strategies for managing application data in heterogeneous memory systems. We propose different program profiling-based techniques to automatically partition program allocation …


Programming Models' Support For Heterogeneous Architecture, Wei Wu May 2017

Programming Models' Support For Heterogeneous Architecture, Wei Wu

Doctoral Dissertations

Accelerator-enhanced computing platforms have drawn a lot of attention due to their massive peak computational capacity. Heterogeneous systems equipped with accelerators such as GPUs have become the most prominent components of High Performance Computing (HPC) systems. Even at the node level the significant heterogeneity of CPU and GPU, i.e. hardware and memory space differences, leads to challenges for fully exploiting such complex architectures. Extending outside the node scope, only escalate such challenges.

Conventional programming models such as data- ow and message passing have been widely adopted in HPC communities. When moving towards heterogeneous systems, the lack of GPU integration causes …


Project Arduino, Kevin Ye, Gregory Rouleau, Alan Person, Jabril Muhammad May 2017

Project Arduino, Kevin Ye, Gregory Rouleau, Alan Person, Jabril Muhammad

Chancellor’s Honors Program Projects

No abstract provided.


Context-Sensitive Auto-Sanitization For Php, Jared M. Smith, Richard J. Connor, David P. Cunningham, Kyle G. Bashour, Walter T. Work Dec 2016

Context-Sensitive Auto-Sanitization For Php, Jared M. Smith, Richard J. Connor, David P. Cunningham, Kyle G. Bashour, Walter T. Work

Chancellor’s Honors Program Projects

No abstract provided.


Three Body Interactions Of Rare Gas Solids Calculated Within The Einstein Model, Dan D'Andrea Dec 2016

Three Body Interactions Of Rare Gas Solids Calculated Within The Einstein Model, Dan D'Andrea

Masters Theses

Three body interactions can become important in solids at higher pressures and densities as the molecules can come into close contact. At low temperatures, accurate studies of three body interactions in solids require averaging the three-body terms over the molecules' zero point motions. An efficient, but approximate, averaging approach is based on a polynomial approximation of the three-body term. The polynomial approximation can be developed as a function of the symmetry coordinates of a triangle displaced from its average geometry and also as a function of the Cartesian zero point displacements from each atom’s average position. The polynomial approximation approach …


Parallel For Loops On Heterogeneous Resources, Frederick Edward Weber Dec 2012

Parallel For Loops On Heterogeneous Resources, Frederick Edward Weber

Doctoral Dissertations

In recent years, Graphics Processing Units (GPUs) have piqued the interest of researchers in scientific computing. Their immense floating point throughput and massive parallelism make them ideal for not just graphical applications, but many general algorithms as well. Load balancing applications and taking advantage of all computational resources in a machine is a difficult challenge, especially when the resources are heterogeneous. This dissertation presents the clUtil library, which vastly simplifies developing OpenCL applications for heterogeneous systems. The core focus of this dissertation lies in clUtil's ParallelFor construct and our novel PINA scheduler which can efficiently load balance work onto multiple …