Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2022

Optimization

Articles 1 - 13 of 13

Full-Text Articles in Computer Sciences

Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu Aug 2022

Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu

Dissertations

This dissertation summarizes computational results from applying reinforcement learning and deep neural network to the designs of artificial microswimmers in the inertialess regime, where the viscous dissipation in the surrounding fluid environment dominates and the swimmer’s inertia is completely negligible. In particular, works in this dissertation consist of four interrelated studies of the design of microswimmers for different tasks: (1) a one-dimensional microswimmer in free-space that moves towards the target via translation, (2) a one-dimensional microswimmer in a periodic domain that rotates to reach the target, (3) a two-dimensional microswimmer that switches gaits to navigate to the designated targets in …


Geometric Algorithms For Modeling Plant Roots From Images, Dan Zeng Aug 2022

Geometric Algorithms For Modeling Plant Roots From Images, Dan Zeng

McKelvey School of Engineering Theses & Dissertations

Roots, considered as the ”hidden half of the plant”, are essential to a plant’s health and pro- ductivity. Understanding root architecture has the potential to enhance efforts towards im- proving crop yield. In this dissertation we develop geometric approaches to non-destructively characterize the full architecture of the root system from 3D imaging while making com- putational advances in topological optimization. First, we develop a global optimization algorithm to remove topological noise, with applications in both root imaging and com- puter graphics. Second, we use our topology simplification algorithm, other methods from computer graphics, and customized algorithms to develop a high-throughput …


Design And Analysis Of Strategic Behavior In Networks, Sixie Yu Aug 2022

Design And Analysis Of Strategic Behavior In Networks, Sixie Yu

McKelvey School of Engineering Theses & Dissertations

Networks permeate every aspect of our social and professional life.A networked system with strategic individuals can represent a variety of real-world scenarios with socioeconomic origins. In such a system, the individuals' utilities are interdependent---one individual's decision influences the decisions of others and vice versa. In order to gain insights into the system, the highly complicated interactions necessitate some level of abstraction. To capture the otherwise complex interactions, I use a game theoretic model called Networked Public Goods (NPG) game. I develop a computational framework based on NPGs to understand strategic individuals' behavior in networked systems. The framework consists of three …


Model-Based Deep Learning For Computational Imaging, Xiaojian Xu Aug 2022

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu

McKelvey School of Engineering Theses & Dissertations

This dissertation addresses model-based deep learning for computational imaging. The motivation of our work is driven by the increasing interests in the combination of imaging model, which provides data-consistency guarantees to the observed measurements, and deep learning, which provides advanced prior modeling driven by data. Following this idea, we develop multiple algorithms by integrating the classical model-based optimization and modern deep learning to enable efficient and reliable imaging. We demonstrate the performance of our algorithms by validating their performance on various imaging applications and providing rigorous theoretical analysis.

The dissertation evaluates and extends three general frameworks, plug-and-play priors (PnP), regularized …


Abm Simulation Model Of A Pandemic For Optimizing Vaccination Strategy, Gibeom Park Aug 2022

Abm Simulation Model Of A Pandemic For Optimizing Vaccination Strategy, Gibeom Park

Theses and Dissertations

This study presents a process-oriented hybrid model for individuals' immune responses and interactions involving vaccination to describe the trend of contagious disease and estimate the future societal cost. The model considers "recovery" as a non-absorbing state and incorporates various infection stage states including two symptomatic states. To model contagiousness to be consistent with the current pandemic and include that the spread of a disease depends on the mobility of people, we developed an Agent-Based Simulator that fitted to the particular model used in this study and can test various what-if scenarios. We improved the simulator considerably by appying data structures …


Development Of Software Tools For Efficient And Sustainable Process Development And Improvement, Jake P. Stengel Jun 2022

Development Of Software Tools For Efficient And Sustainable Process Development And Improvement, Jake P. Stengel

Theses and Dissertations

Infrastructure is a key component in the well-being of our society that leads to its growth, development, and productive operations. A well-built infrastructure allows the community to be more competitive and promotes economic advancement. In 2021, the ASCE (American Society of Civil Engineers) ranked the American infrastructure as substandard, with an overall grade of C-. The overall ranking suffers when key infrastructure categories are not maintained according to the needs of the population. Therefore, there is a need to consider alternative methods to improve our infrastructure and make it more sustainable to enhance the overall grade. One of the challenges …


Comparing Learned Representations Between Unpruned And Pruned Deep Convolutional Neural Networks, Parker Mitchell Jun 2022

Comparing Learned Representations Between Unpruned And Pruned Deep Convolutional Neural Networks, Parker Mitchell

Master's Theses

While deep neural networks have shown impressive performance in computer vision tasks, natural language processing, and other domains, the sizes and inference times of these models can often prevent them from being used on resource-constrained systems. Furthermore, as these networks grow larger in size and complexity, it can become even harder to understand the learned representations of the input data that these networks form through training. These issues of growing network size, increasing complexity and runtime, and ambiguity in the understanding of internal representations serve as guiding points for this work.

In this thesis, we create a neural network that …


Multi-Device Data Analysis For Fault Localization In Electrical Distribution Grids, Jacob D L Hunte Apr 2022

Multi-Device Data Analysis For Fault Localization In Electrical Distribution Grids, Jacob D L Hunte

Electronic Thesis and Dissertation Repository

The work presented in this dissertation represents work which addresses some of the main challenges of fault localization methods in electrical distribution grids. The methods developed largely assume access to sophisticated data sources that may not be available and that any data sets recorded by devices are synchronized. These issues have created a barrier to the adoption of many solutions by industry. The goal of the research presented in this dissertation is to address these challenges through the development of three elements. These elements are a synchronization protocol, a fault localization technique, and a sensor placement algorithm.

The synchronization protocol …


Finding Optimal Cayley Map Embeddings Using Genetic Algorithms, Jacob Buckelew Jan 2022

Finding Optimal Cayley Map Embeddings Using Genetic Algorithms, Jacob Buckelew

Honors Program Theses

Genetic algorithms are a commonly used metaheuristic search method aimed at solving complex optimization problems in a variety of fields. These types of algorithms lend themselves to problems that can incorporate stochastic elements, which allows for a wider search across a search space. However, the nature of the genetic algorithm can often cause challenges regarding time-consumption. Although the genetic algorithm may be widely applicable to various domains, it is not guaranteed that the algorithm will outperform other traditional search methods in solving problems specific to particular domains. In this paper, we test the feasibility of genetic algorithms in solving a …


Multi-Agent Pathfinding In Mixed Discrete-Continuous Time And Space, Thayne T. Walker Jan 2022

Multi-Agent Pathfinding In Mixed Discrete-Continuous Time And Space, Thayne T. Walker

Electronic Theses and Dissertations

In the multi-agent pathfinding (MAPF) problem, agents must move from their current locations to their individual destinations while avoiding collisions. Ideally, agents move to their destinations as quickly and efficiently as possible. MAPF has many real-world applications such as navigation, warehouse automation, package delivery and games. Coordination of agents is necessary in order to avoid conflicts, however, it can be very computationally expensive to find mutually conflict-free paths for multiple agents – especially as the number of agents is increased. Existing state-ofthe- art algorithms have been focused on simplified problems on grids where agents have no shape or volume, and …


Genetic Algorighm Representation Selection Impact On Binary Classification Problems, Stephen V. Maldonado Jan 2022

Genetic Algorighm Representation Selection Impact On Binary Classification Problems, Stephen V. Maldonado

Honors Undergraduate Theses

In this thesis, we explore the impact of problem representation on the ability for the genetic algorithms (GA) to evolve a binary prediction model to predict whether a physical therapist is paid above or below the median amount from Medicare. We explore three different problem representations, the vector GA (VGA), the binary GA (BGA), and the proportional GA (PGA). We find that all three representations can produce models with high accuracy and low loss that are better than Scikit-Learn’s logistic regression model and that all three representations select the same features; however, the PGA representation tends to create lower weights …


Design, Analysis, And Optimization Of Traffic Engineering For Software Defined Networks, Mohammed Ibrahim Salman Jan 2022

Design, Analysis, And Optimization Of Traffic Engineering For Software Defined Networks, Mohammed Ibrahim Salman

Browse all Theses and Dissertations

Network traffic has been growing exponentially due to the rapid development of applications and communications technologies. Conventional routing protocols, such as Open-Shortest Path First (OSPF), do not provide optimal routing and result in weak network resources. Optimal traffic engineering (TE) is not applicable in practice due to operational constraints such as limited memory on the forwarding devices and routes oscillation. Recently, a new way of centralized management of networks enabled by Software-Defined Networking (SDN) made it easy to apply most traffic engineering ideas in practice. \par Toward creating an applicable traffic engineering system, we created a TE simulator for experimenting …


Dynamic Nonlinear Gaussian Model For Inferring A Graph Structure On Time Series, Abhinuv Uppal Jan 2022

Dynamic Nonlinear Gaussian Model For Inferring A Graph Structure On Time Series, Abhinuv Uppal

CMC Senior Theses

In many applications of graph analytics, the optimal graph construction is not always straightforward. I propose a novel algorithm to dynamically infer a graph structure on multiple time series by first imposing a state evolution equation on the graph and deriving the necessary equations to convert it into a maximum likelihood optimization problem. The state evolution equation guarantees that edge weights contain predictive power by construction. After running experiments on simulated data, it appears the required optimization is likely non-convex and does not generally produce results significantly better than randomly tweaking parameters, so it is not feasible to use in …