Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistics and Probability

PDF

Theses/Dissertations

Machine Learning

Institution
Publication Year
Publication

Articles 1 - 30 of 34

Full-Text Articles in Computer Sciences

Code For Care: Hypertension Prediction In Women Aged 18-39 Years, Kruti Sheth May 2024

Code For Care: Hypertension Prediction In Women Aged 18-39 Years, Kruti Sheth

Electronic Theses, Projects, and Dissertations

The longstanding prevalence of hypertension, often undiagnosed, poses significant risks of severe chronic and cardiovascular complications if left untreated. This study investigated the causes and underlying risks of hypertension in females aged between 18-39 years. The research questions were: (Q1.) What factors affect the occurrence of hypertension in females aged 18-39 years? (Q2.) What machine learning algorithms are suited for effectively predicting hypertension? (Q3.) How can SHAP values be leveraged to analyze the factors from model outputs? The findings are: (Q1.) Performing Feature selection using binary classification Logistic regression algorithm reveals an array of 30 most influential factors at an …


Integrating Machine Learning Methods For Medical Diagnosis, Jazmin Quezada Dec 2023

Integrating Machine Learning Methods For Medical Diagnosis, Jazmin Quezada

Open Access Theses & Dissertations

Abstract:The rapid advancement of machine learning techniques has revolutionized the field of medical diagnosis by offering powerful tools to analyze complex data sets and make accurate predictions. In this proposed method, we present a novel approach that integrates machine learning and optimization models to enhance the accuracy of medical diagnoses. Our method focuses on fine-tuning and optimizing the parameters of machine learning algorithms commonly used in medical diagnosis, such as logistic regression, support vector machines, and neural networks. By employing optimization techniques, we systematically explore the parameter space of these algorithms to discover the most optimal configurations. Moreover, by representing …


Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa Dec 2023

Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa

Doctoral Dissertations

In the burgeoning field of quantum machine learning, the fusion of quantum computing and machine learning methodologies has sparked immense interest, particularly with the emergence of noisy intermediate-scale quantum (NISQ) devices. These devices hold the promise of achieving quantum advantage, but they grapple with limitations like constrained qubit counts, limited connectivity, operational noise, and a restricted set of operations. These challenges necessitate a strategic and deliberate approach to crafting effective quantum machine learning algorithms.

This dissertation revolves around an exploration of these challenges, presenting innovative strategies that tailor quantum algorithms and processes to seamlessly integrate with commercial quantum platforms. A …


A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb May 2023

A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb

Masters Theses

One of the biggest challenges the clinical research industry currently faces is the accurate forecasting of patient enrollment (namely if and when a clinical trial will achieve full enrollment), as the stochastic behavior of enrollment can significantly contribute to delays in the development of new drugs, increases in duration and costs of clinical trials, and the over- or under- estimation of clinical supply. This study proposes a Machine Learning model using a Fully Convolutional Network (FCN) that is trained on a dataset of 100,000 patient enrollment data points including patient age, patient gender, patient disease, investigational product, study phase, blinded …


Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen Oct 2022

Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen

Doctoral Dissertations and Master's Theses

Accurate characterization of fragment fly-out properties from high-speed warhead detonations is essential for estimation of collateral damage and lethality for a given weapon. Real warhead dynamic detonation tests are rare, costly, and often unrealizable with current technology, leaving fragmentation experiments limited to static arena tests and numerical simulations. Stereoscopic imaging techniques can now provide static arena tests with time-dependent tracks of individual fragments, each with characteristics such as fragment IDs and their respective position vector. Simulation methods can account for the dynamic case but can exclude relevant dynamics experienced in real-life warhead detonations. This research leverages machine learning methodologies to …


Mathematical Models Yield Insights Into Cnns: Applications In Natural Image Restoration And Population Genetics, Ryan Cecil Aug 2022

Mathematical Models Yield Insights Into Cnns: Applications In Natural Image Restoration And Population Genetics, Ryan Cecil

Electronic Theses and Dissertations

Due to a rise in computational power, machine learning (ML) methods have become the state-of-the-art in a variety of fields. Known to be black-box approaches, however, these methods are oftentimes not well understood. In this work, we utilize our understanding of model-based approaches to derive insights into Convolutional Neural Networks (CNNs). In the field of Natural Image Restoration, we focus on the image denoising problem. Recent work have demonstrated the potential of mathematically motivated CNN architectures that learn both `geometric' and nonlinear higher order features and corresponding regularizers. We extend this work by showing that not only can geometric features …


Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero Aug 2022

Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero

Doctoral Dissertations

With the continuous improvements in biological data collection, new techniques are needed to better understand the complex relationships in genomic and other biological data sets. Explainable Artificial Intelligence (X-AI) techniques like Iterative Random Forest (iRF) excel at finding interactions within data, such as genomic epistasis. Here, the introduction of new methods to mine for these complex interactions is shown in a variety of scenarios. The application of iRF as a method for Genomic Wide Epistasis Studies shows that the method is robust in finding interacting sets of features in synthetic data, without requiring the exponentially increasing computation time of many …


Forecasting Bitcoin, Ethereum And Litecoin Prices Using Machine Learning, Sai Prabhu Jaligama Jan 2022

Forecasting Bitcoin, Ethereum And Litecoin Prices Using Machine Learning, Sai Prabhu Jaligama

Graduate Research Theses & Dissertations

This research aims to predict the cryptocurrencies Bitcoin, Litecoin and Ethereum using Time Series Modelling with daily data of closing price from 16th of October 2018 to 9th of September 2021for a total of 1073 days. Augmented Dickey Fuller test was first used to check stationarity of the time series, then two forecasting algorithms called ARIMA, and PROPHET were used to make predictions. The findings show similar results for both the models for each of Bitcoin, Ethereum and Litecoin. The results achieved show modelling cryptocurrencies which are volatile using a single variable produces satisfying results.


Reinforcement Learning: Low Discrepancy Action Selection For Continuous States And Actions, Jedidiah Lindborg Jan 2022

Reinforcement Learning: Low Discrepancy Action Selection For Continuous States And Actions, Jedidiah Lindborg

Electronic Theses and Dissertations

In reinforcement learning the process of selecting an action during the exploration or exploitation stage is difficult to optimize. The purpose of this thesis is to create an action selection process for an agent by employing a low discrepancy action selection (LDAS) method. This should allow the agent to quickly determine the utility of its actions by prioritizing actions that are dissimilar to ones that it has already picked. In this way the learning process should be faster for the agent and result in more optimal policies.


Node Classification On Relational Graphs Using Deep-Rgcns, Nagasai Chandra Mar 2021

Node Classification On Relational Graphs Using Deep-Rgcns, Nagasai Chandra

Master's Theses

Knowledge Graphs are fascinating concepts in machine learning as they can hold usefully structured information in the form of entities and their relations. Despite the valuable applications of such graphs, most knowledge bases remain incomplete. This missing information harms downstream applications such as information retrieval and opens a window for research in statistical relational learning tasks such as node classification and link prediction. This work proposes a deep learning framework based on existing relational convolutional (R-GCN) layers to learn on highly multi-relational data characteristic of realistic knowledge graphs for node property classification tasks. We propose a deep and improved variant, …


Machine Learning Morphisms: A Framework For Designing And Analyzing Machine Learning Work Ows, Applied To Separability, Error Bounds, And 30-Day Hospital Readmissions, Eric Zenon Cawi Jan 2021

Machine Learning Morphisms: A Framework For Designing And Analyzing Machine Learning Work Ows, Applied To Separability, Error Bounds, And 30-Day Hospital Readmissions, Eric Zenon Cawi

McKelvey School of Engineering Theses & Dissertations

A machine learning workflow is the sequence of tasks necessary to implement a machine learning application, including data collection, preprocessing, feature engineering, exploratory analysis, and model training/selection. In this dissertation we propose the Machine Learning Morphism (MLM) as a mathematical framework to describe the tasks in a workflow. The MLM is a tuple consisting of: Input Space, Output Space, Learning Morphism, Parameter Prior, Empirical Risk Function. This contains the information necessary to learn the parameters of the learning morphism, which represents a workflow task. In chapter 1, we give a short review of typical tasks present in a workflow, as …


Statistical And Machine Learning Approaches To Depressive Disorders Among Adults In The United States: From Factor Discovery To Prediction Evaluation, Minhwa Lee Jan 2021

Statistical And Machine Learning Approaches To Depressive Disorders Among Adults In The United States: From Factor Discovery To Prediction Evaluation, Minhwa Lee

Senior Independent Study Theses

According to the National Institutes of Mental Health (NIMH), depressive disorders (or major depression) are considered one of the most common and serious health risks in the United States. Our study focuses on extracting non-medical factors of depressive disorders diagnosis, such as overall health states, health risk behaviors, demography, and healthcare access, using the Behavioral Risk Factor Surveillance System (BRFSS) data set collected by the Centers for Disease Control and Prevention (CDC) in 2018.

We set the two objectives of our study about depressive disorders diagnosis in the United States as follows. First, we aim to utilize machine learning algorithms …


Random Search Plus: A More Effective Random Search For Machine Learning Hyperparameters Optimization, Bohan Li Dec 2020

Random Search Plus: A More Effective Random Search For Machine Learning Hyperparameters Optimization, Bohan Li

Masters Theses

Machine learning hyperparameter optimization has always been the key to improve model performance. There are many methods of hyperparameter optimization. The popular methods include grid search, random search, manual search, Bayesian optimization, population-based optimization, etc. Random search occupies less computations than the grid search, but at the same time there is a penalty for accuracy. However, this paper proposes a more effective random search method based on the traditional random search and hyperparameter space separation. This method is named random search plus. This thesis empirically proves that random search plus is more effective than random search. There are some case …


Machine Learning Applications For Drug Repurposing, Hansaim Lim Sep 2020

Machine Learning Applications For Drug Repurposing, Hansaim Lim

Dissertations, Theses, and Capstone Projects

The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected …


Machine-Learning-Based Prediction Of Sepsis Events From Vertical Clinical Trial Data: A Naïve Approach, Tyler Michael Gaddis Aug 2020

Machine-Learning-Based Prediction Of Sepsis Events From Vertical Clinical Trial Data: A Naïve Approach, Tyler Michael Gaddis

Theses and Dissertations

Sepsis is a potentially life-threatening condition characterized by a dysregulated, disproportionate immune response to infection by which the afflicted body attacks its own tissues, sometimes to the point of organ failure, and in the worst cases, death. According to the Centers for Disease Control and Prevention (CDC) Sepsis is reported to kill upwards of 270,000 Americans annually, though this figure may be greater given certain ambiguities in the current accepted diagnostic framework of the disease.

This study attempted to first establish an understanding of past definitions of sepsis, and to then recommend use of machine learning as integral in an …


Orthogonal Recurrent Neural Networks And Batch Normalization In Deep Neural Networks, Kyle Eric Helfrich Jan 2020

Orthogonal Recurrent Neural Networks And Batch Normalization In Deep Neural Networks, Kyle Eric Helfrich

Theses and Dissertations--Mathematics

Despite the recent success of various machine learning techniques, there are still numerous obstacles that must be overcome. One obstacle is known as the vanishing/exploding gradient problem. This problem refers to gradients that either become zero or unbounded. This is a well known problem that commonly occurs in Recurrent Neural Networks (RNNs). In this work we describe how this problem can be mitigated, establish three different architectures that are designed to avoid this issue, and derive update schemes for each architecture. Another portion of this work focuses on the often used technique of batch normalization. Although found to be successful …


Process Based Analysis Of Fluvial Stratigraphic Record: Middle Pennsylvanian Allegheny Formation, North-Central Wv, Oluwasegun O. Abatan Jan 2020

Process Based Analysis Of Fluvial Stratigraphic Record: Middle Pennsylvanian Allegheny Formation, North-Central Wv, Oluwasegun O. Abatan

Graduate Theses, Dissertations, and Problem Reports

Fluvial deposits represent some of the best hydrocarbon reservoirs, but the quality of fluvial reservoirs varies depending on the reservoir architecture, which is controlled by allogenic and autogenic processes. Allogenic controls, including paleoclimate, tectonics, and glacio-eustasy, have long been debated as dominant controls in the deposition of fluvial strata. However, recent research has questioned the validity of this cyclicity and may indicate major influence from autogenic controls. To further investigate allogenic controls on stratal order, I analyzed the facies architecture, geomorphology, paleohydrology, and the stratigraphic framework of the Middle Pennsylvanian Allegheny Formation (MPAF), a fluvial depositional system in the Appalachian …


Artificial Neural Network Models For Pattern Discovery From Ecg Time Series, Mehakpreet Kaur Jan 2020

Artificial Neural Network Models For Pattern Discovery From Ecg Time Series, Mehakpreet Kaur

Electronic Theses and Dissertations

Artificial Neural Network (ANN) models have recently become de facto models for deep learning with a wide range of applications spanning from scientific fields such as computer vision, physics, biology, medicine to social life (suggesting preferred movies, shopping lists, etc.). Due to advancements in computer technology and the increased practice of Artificial Intelligence (AI) in medicine and biological research, ANNs have been extensively applied not only to provide quick information about diseases, but also to make diagnostics accurate and cost-effective. We propose an ANN-based model to analyze a patient's electrocardiogram (ECG) data and produce accurate diagnostics regarding possible heart diseases …


Ordinal Hyperplane Loss, Bob Vanderheyden Dec 2019

Ordinal Hyperplane Loss, Bob Vanderheyden

Doctor of Data Science and Analytics Dissertations

This research presents the development of a new framework for analyzing ordered class data, commonly called “ordinal class” data. The focus of the work is the development of classifiers (predictive models) that predict classes from available data. Ratings scales, medical classification scales, socio-economic scales, meaningful groupings of continuous data, facial emotional intensity and facial age estimation are examples of ordinal data for which data scientists may be asked to develop predictive classifiers. It is possible to treat ordinal classification like any other classification problem that has more than two classes. Specifying a model with this strategy does not fully utilize …


Deep Embedding Kernel, Linh Le Apr 2019

Deep Embedding Kernel, Linh Le

Doctor of Data Science and Analytics Dissertations

Kernel methods and deep learning are two major branches of machine learning that have achieved numerous successes in both analytics and artificial intelligence. While having their own unique characteristics, both branches work through mapping data to a feature space that is supposedly more favorable towards the given task. This dissertation addresses the strengths and weaknesses of each mapping method through combining them and forming a family of novel deep architectures that center around the Deep Embedding Kernel (DEK). In short, DEK is a realization of a kernel function through a newly deep architecture. The mapping in DEK is both implicit …


Quantifying Human Biological Age: A Machine Learning Approach, Syed Ashiqur Rahman Jan 2019

Quantifying Human Biological Age: A Machine Learning Approach, Syed Ashiqur Rahman

Graduate Theses, Dissertations, and Problem Reports

Quantifying human biological age is an important and difficult challenge. Different biomarkers and numerous approaches have been studied for biological age prediction, each with its advantages and limitations. In this work, we first introduce a new anthropometric measure (called Surface-based Body Shape Index, SBSI) that accounts for both body shape and body size, and evaluate its performance as a predictor of all-cause mortality. We analyzed data from the National Health and Human Nutrition Examination Survey (NHANES). Based on the analysis, we introduce a new body shape index constructed from four important anthropometric determinants of body shape and body size: body …


Machine Learning Methods For Network Intrusion Detection And Intrusion Prevention Systems, Zheni Svetoslavova Stefanova Jul 2018

Machine Learning Methods For Network Intrusion Detection And Intrusion Prevention Systems, Zheni Svetoslavova Stefanova

USF Tampa Graduate Theses and Dissertations

Given the continuing advancement of networking applications and our increased dependence upon software-based systems, there is a pressing need to develop improved security techniques for defending modern information technology (IT) systems from malicious cyber-attacks. Indeed, anyone can be impacted by such activities, including individuals, corporations, and governments. Furthermore, the sustained expansion of the network user base and its associated set of applications is also introducing additional vulnerabilities which can lead to criminal breaches and loss of critical data. As a result, the broader cybersecurity problem area has emerged as a significant concern, with many solution strategies being proposed for both …


Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu Apr 2018

Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu

Electronic Thesis and Dissertation Repository

ChIP-seq experiments can identify the genome-wide binding site motifs of a transcription factor (TF) and determine its sequence specificity. Multiple algorithms were developed to derive TF binding site (TFBS) motifs from ChIP-seq data, including the entropy minimization-based Bipad that can derive both contiguous and bipartite motifs. Prior studies applying these algorithms to ChIP-seq data only analyzed a small number of top peaks with the highest signal strengths, biasing their resultant position weight matrices (PWMs) towards consensus-like, strong binding sites; nor did they derive bipartite motifs, disabling the accurate modelling of binding behavior of dimeric TFs.

This thesis presents a novel …


Offline And Online Density Estimation For Large High-Dimensional Data, Aref Majdara Jan 2018

Offline And Online Density Estimation For Large High-Dimensional Data, Aref Majdara

Dissertations, Master's Theses and Master's Reports

Density estimation has wide applications in machine learning and data analysis techniques including clustering, classification, multimodality analysis, bump hunting and anomaly detection. In high-dimensional space, sparsity of data in local neighborhood makes many of parametric and nonparametric density estimation methods mostly inefficient.

This work presents development of computationally efficient algorithms for high-dimensional density estimation, based on Bayesian sequential partitioning (BSP). Copula transform is used to separate the estimation of marginal and joint densities, with the purpose of reducing the computational complexity and estimation error. Using this separation, a parallel implementation of the density estimation algorithm on a 4-core CPU is …


Developing Leading And Lagging Indicators To Enhance Equipment Reliability In A Lean System, Dhanush Agara Mallesh Dec 2017

Developing Leading And Lagging Indicators To Enhance Equipment Reliability In A Lean System, Dhanush Agara Mallesh

Masters Theses

With increasing complexity in equipment, the failure rates are becoming a critical metric due to the unplanned maintenance in a production environment. Unplanned maintenance in manufacturing process is created issues with downtimes and decreasing the reliability of equipment. Failures in equipment have resulted in the loss of revenue to organizations encouraging maintenance practitioners to analyze ways to change unplanned to planned maintenance. Efficient failure prediction models are being developed to learn about the failures in advance. With this information, failures predicted can reduce the downtimes in the system and improve the throughput.

The goal of this thesis is to predict …


Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan Mar 2017

Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan

Masters Theses

Recent advances in cloud-based big-data technologies now makes data driven solutions feasible for increasing numbers of scientific computing applications. One such data driven solution approach is machine learning where patterns in large data sets are brought to the surface by finding complex mathematical relationships within the data. Nowcasting or short-term prediction of rainfall in a given region is an important problem in meteorology. In this thesis we explore the nowcasting problem through a data driven approach by formulating it as a machine learning problem.

State-of-the-art nowcasting systems today are based on numerical models which describe the physical processes leading to …


Stage-Specific Predictive Models For Cancer Survivability, Elham Sagheb Hossein Pour Dec 2016

Stage-Specific Predictive Models For Cancer Survivability, Elham Sagheb Hossein Pour

Theses and Dissertations

Survivability of cancer strongly depends on the stage of cancer. In most previous works, machine learning survivability prediction models for a particular cancer, were trained and evaluated together on all stages of the cancer. In this work, we trained and evaluated survivability prediction models for five major cancers, together on all stages and separately for every stage. We named these models joint and stage-specific models respectively. The obtained results for the cancers which we investigated reveal that, the best model to predict the survivability of the cancer for one specific stage is the model which is specifically built for that …


Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu Nov 2016

Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu

Doctoral Dissertations

A basic premise behind modern secure computation is the demand for lightweight cryptographic primitives, like identifier or key generator. From a circuit perspective, the development of cryptographic modules has also been driven by the aggressive scalability of complementary metal-oxide-semiconductor (CMOS) technology. While advancing into nano-meter regime, one significant characteristic of today's CMOS design is the random nature of process variability, which limits the nominal circuit design. With the continuous scaling of CMOS technology, instead of mitigating the physical variability, leveraging such properties becomes a promising way. One of the famous products adhering to this double-edged sword philosophy is the Physically …


Radical Recognition In Off-Line Handwritten Chinese Characters Using Non-Negative Matrix Factorization, Xiangying Shuai Jan 2016

Radical Recognition In Off-Line Handwritten Chinese Characters Using Non-Negative Matrix Factorization, Xiangying Shuai

Senior Projects Spring 2016

In the past decade, handwritten Chinese character recognition has received renewed interest with the emergence of touch screen devices. Other popular applications include on-line Chinese character dictionary look-up and visual translation in mobile phone applications. Due to the complex structure of Chinese characters, this classification task is not exactly an easy one, as it involves knowledge from mathematics, computer science, and linguistics.

Given a large image database of handwritten character data, the goal of my senior project is to use Non-Negative Matrix Factorization (NMF), a recent method for finding a suitable representation (parts-based representation) of image data, to detect specific …


Predicting Intraday Financial Market Dynamics Using Takens' Vectors; Incorporating Causality Testing And Machine Learning Techniques, Abubakar-Sadiq Bouda Abdulai Dec 2015

Predicting Intraday Financial Market Dynamics Using Takens' Vectors; Incorporating Causality Testing And Machine Learning Techniques, Abubakar-Sadiq Bouda Abdulai

Electronic Theses and Dissertations

Traditional approaches to predicting financial market dynamics tend to be linear and stationary, whereas financial time series data is increasingly nonlinear and non-stationary. Lately, advances in dynamical systems theory have enabled the extraction of complex dynamics from time series data. These developments include theory of time delay embedding and phase space reconstruction of dynamical systems from a scalar time series. In this thesis, a time delay embedding approach for predicting intraday stock or stock index movement is developed. The approach combines methods of nonlinear time series analysis with those of causality testing, theory of dynamical systems and machine learning (artificial …