Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computer Sciences

Interpretable Machine Learning And Sparse Coding For Computer Vision, Will Landecker Aug 2014

Interpretable Machine Learning And Sparse Coding For Computer Vision, Will Landecker

Dissertations and Theses

Machine learning offers many powerful tools for prediction. One of these tools, the binary classifier, is often considered a black box. Although its predictions may be accurate, we might never know why the classifier made a particular prediction. In the first half of this dissertation, I review the state of the art of interpretable methods (methods for explaining why); after noting where the existing methods fall short, I propose a new method for a particular type of black box called additive networks. I offer a proof of trustworthiness for this new method (meaning a proof that my method does not …


A Comparative Study Of Reservoir Computing For Temporal Signal Processing, Alireza Goudarzi, Peter Banda, Matthew R. Lakin, Christof Teuscher, Darko Stefanovic Jan 2014

A Comparative Study Of Reservoir Computing For Temporal Signal Processing, Alireza Goudarzi, Peter Banda, Matthew R. Lakin, Christof Teuscher, Darko Stefanovic

Computer Science Faculty Publications and Presentations

Reservoir computing (RC) is a novel approach to time series prediction using recurrent neural networks. In RC, an input signal perturbs the intrinsic dynamics of a medium called a reservoir. A readout layer is then trained to reconstruct a target output from the reservoir's state. The multitude of RC architectures and evaluation metrics poses a challenge to both practitioners and theorists who study the task-solving performance and computational power of RC. In addition, in contrast to traditional computation models, the reservoir is a dynamical system in which computation and memory are inseparable, and therefore hard to analyze. Here, we compare …