Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computer Sciences

Local-Global Results On Discrete Structures, Alexander Lewis Stevens Jan 2022

Local-Global Results On Discrete Structures, Alexander Lewis Stevens

Electronic Theses and Dissertations

Local-global arguments, or those which glean global insights from local information, are central ideas in many areas of mathematics and computer science. For instance, in computer science a greedy algorithm makes locally optimal choices that are guaranteed to be consistent with a globally optimal solution. On the mathematical end, global information on Riemannian manifolds is often implied by (local) curvature lower bounds. Discrete notions of graph curvature have recently emerged, allowing ideas pioneered in Riemannian geometry to be extended to the discrete setting. Bakry- Émery curvature has been one such successful notion of curvature. In this thesis we use combinatorial …


Graph Realizability And Factor Properties Based On Degree Sequence, Daniel John Jan 2022

Graph Realizability And Factor Properties Based On Degree Sequence, Daniel John

Electronic Theses and Dissertations

A graph is a structure consisting of a set of vertices and edges. Graph construction has been a focus of research for a long time, and generating graphs has proven helpful in complex networks and artificial intelligence.

A significant problem that has been a focus of research is whether a given sequence of integers is graphical. Havel and Hakimi stated necessary and sufficient conditions for a degree sequence to be graphic with different properties. In our work, we have proved the sufficiency of the requirements by generating algorithms and providing constructive proof.

Given a degree sequence, one crucial problem is …


Reinforcement Learning: Low Discrepancy Action Selection For Continuous States And Actions, Jedidiah Lindborg Jan 2022

Reinforcement Learning: Low Discrepancy Action Selection For Continuous States And Actions, Jedidiah Lindborg

Electronic Theses and Dissertations

In reinforcement learning the process of selecting an action during the exploration or exploitation stage is difficult to optimize. The purpose of this thesis is to create an action selection process for an agent by employing a low discrepancy action selection (LDAS) method. This should allow the agent to quickly determine the utility of its actions by prioritizing actions that are dissimilar to ones that it has already picked. In this way the learning process should be faster for the agent and result in more optimal policies.