Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Chemistry

Determining The Reactivity And Oxidation Intermediates Of An Allylnickel (N-Heterocyclic Carbene) Chloride Complex, Scott W. E. Hendriks Sep 2017

Determining The Reactivity And Oxidation Intermediates Of An Allylnickel (N-Heterocyclic Carbene) Chloride Complex, Scott W. E. Hendriks

Electronic Thesis and Dissertation Repository

The oxidation of C-H bonds to carbonyl functional groups using molecular oxygen (O2) is a desirable process as O2 is environmentally benign and inexpensive. However, oxidations that employ O2 have lower product selectivity, making it industrially unappealing. The metal complexes NiCl(π-cinnamyl)(NHC) oxidize stoichiometrically with O2 as the oxidant to selectively form the ketone and aldehyde products.

This thesis details the attempted catalysis with the NiCl(π-allyl)(NHC) complex and the stoichiometric reactivity of NiCl(π-allyl)(NHC) and NiCl(π-cinnamyl)(NHC) complexes upon O2 exposure. An investigation of the intermediate and decomposition species of the NiCl(π-allyl)(NHC) complex was conducted. The complexes …


Surface Chemical Properties Of Mo2C, W2C, Mo2N And W2N Probed With Co, Co2And O2 Adsorption: A Dft Analysis, Jingyun Ye, Tianyu Zhang, Lingyun Xu, Shuxia Yin, Krishanthi Weerasinghe, Pamela Ubaldo, Ping And Ge Qingfeng He Aug 2017

Surface Chemical Properties Of Mo2C, W2C, Mo2N And W2N Probed With Co, Co2And O2 Adsorption: A Dft Analysis, Jingyun Ye, Tianyu Zhang, Lingyun Xu, Shuxia Yin, Krishanthi Weerasinghe, Pamela Ubaldo, Ping And Ge Qingfeng He

Journal of Electrochemistry

Transition metal carbides and nitrides are attractive materials for electrodes in many electrochemical energy storage and conversion applications. In the present study, we use density functional theory slab calculations to characterize the surface chemical properties of molybdenum (Mo) and tungsten (W) carbides and nitrides, namely, Mo2C, W2C, Mo2N and W2N with the adsorption of CO, CO2 and O2. These probing molecules provide measures of in both acidity/basicity and redox property of for the surfaces of these carbides and nitrides. Our results show that Lewis basic sites were responsible for CO2 …


Ab Initio Methyl Linoleate Bond Dissociation Energies: First Principles Fishing For Wise Crack Products, Zachary Ryan Wilson Aug 2017

Ab Initio Methyl Linoleate Bond Dissociation Energies: First Principles Fishing For Wise Crack Products, Zachary Ryan Wilson

MSU Graduate Theses

With the prices of petroleum reflecting demand for this finite resource, attention has been turned to alternative sources of energy. Biodiesel, defined as fatty acid methyl esters (FAMEs), exhibits many of the same properties as conventional diesel but is derived from biological sources. FAMEs are subsequently thermally cracked to form more light-weight petrochemical products. I aim to further understand the thermal cracking procedure, at an atomic-level, in hopes that this may aid in future engineering of viable fuels. I studied the effective computational modeling of bond disassociations in the FAME methyl linoleate. Bond dissociation in a 44-reaction database with known …


Investigating The Properties Of Superfluid He-4 Through Density Functional Calculations, Matthew Francis Dutra May 2017

Investigating The Properties Of Superfluid He-4 Through Density Functional Calculations, Matthew Francis Dutra

Doctoral Dissertations

We present a study of isotopically pure He-4 systems evaluated using helium density functional theory (He-DFT) with the intent of better understanding their ground state structural and energetic properties, particularly within the scope of singularly-doped helium droplets. We self-consistently solve for the density profiles and chemical potentials for a wide range of pure helium droplet sizes (up to 9500 atoms) via an imaginary time propagation method, and fit the resultant energetic data to a power law formula to be able to extrapolate values for even larger droplets. Subsequent calculations on singularly-doped droplets within the same size range yield accurate binding …


Green Electrochemical Ozone Production Via Water Splitting: Mechanism Studies, Gregory Gibson, Wenfeng Lin Apr 2017

Green Electrochemical Ozone Production Via Water Splitting: Mechanism Studies, Gregory Gibson, Wenfeng Lin

Journal of Electrochemistry

The green and energy-efficient water splitting reaction using electrocatalysis for O3 formation provides a very attractive alternative to the conventional energy-intensive cold corona discharge (CCD) method. Among a large number of electrocatalysts explored for the electrochemical ozone production, β-PbO2 and SnO2-based catalysts have proven to be the most efficient ones at room temperature. In this study Density Functional Theory (DFT) calculations have been employed to investigate the possible mechanisms of ozone formation over these two types of catalysts. For both the β-PbO2 and Ni/Sb-SnO2 (nickel and antimony doped tin oxide) catalysts the …


Aligning Electronic Energy Levels On The Anatase Tio2(101) Surface, Jun-Jie Zhao, Jun Cheng Feb 2017

Aligning Electronic Energy Levels On The Anatase Tio2(101) Surface, Jun-Jie Zhao, Jun Cheng

Journal of Electrochemistry

As one of the most commonly-used materials for photocatalysis and solar energy conversion, titanium dioxide (TiO2) has been extensively studied for more than 40 years. Its photoelectrochemical activity crucially depends on the band positions at the interface. In this work, the valence band maximum (VBM) and conduction band minimum (CBM) of a model TiO2 surface are computed using the standard work function method at the level of Perdew-Burke-Ernzerhof (PBE) density functional, which are then converted to the scale of the standard hydrogen electrode (SHE) by subtracting the absolute SHE potential. Comparing with the rutile TiO2(110) …


Rationalizing The Band Gap Tunability Of Semiconductors Via Electronic Structure Calculations, Matthew N. Srnec Jan 2017

Rationalizing The Band Gap Tunability Of Semiconductors Via Electronic Structure Calculations, Matthew N. Srnec

Electronic Theses and Dissertations

The polymorphs of titanium dioxide and various diamond-like semiconductor materials are promising candidates in photovoltaic solar cell applications. Several of these polymorphs have been studied with experimental and computational methods, which often aim at tuning the electronic structure, particularly the band gap value of the crystalline solid. Prior studies report that the addition of a substituent into the structure of titanium dioxide decreases its band gap value, but the reasons for this are unknown. Possible explanations for the change in band gap involve the substituent atom's crystal radius, electronegativity, and ionization energy. Understanding the cause of these changes will provide …


A Computational Study Of Silver Doped Cdse Quantum Dots, Heather Gaebler Jan 2017

A Computational Study Of Silver Doped Cdse Quantum Dots, Heather Gaebler

Theses and Dissertations (Comprehensive)

Due to quantum dot’s ability to emit photons when subjected to light of sufficient energy, they have become optimal candidates for biomedical research and for optoelectronic applications. Fascination towards quantum dots arises from the fact that their properties are easily fine-tuned through a variety of different techniques. Electronic doping is a popular technique used to control the properties of quantum dots through the addition of different elements.

Via density functional theory calculations, this work investigated how the structural energies and HOMO-LUMO gaps were altered by the addition of impurity atoms. First, interstitial and substitutional doping styles were investigated at 0 …