Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

Modeling The 3-Dimensional Structure Of D(Cgcgaattcgcg) And Its 8-Oxo-Da5 Adduct With 1h Nmr Noesy Refinements, Christopher Miles Reynolds Dec 2016

Modeling The 3-Dimensional Structure Of D(Cgcgaattcgcg) And Its 8-Oxo-Da5 Adduct With 1h Nmr Noesy Refinements, Christopher Miles Reynolds

MSU Graduate Theses

Since the characterization of the oligomer d(CGCGAATTCGCG) has been published by Dickerson et al., computational studies have been carried out to produce an accurate 3D model. These models are important for visualizing how certain DNA repair enzymes, such as the glycosylases, recognize sites of damage by signatures of local 3D distortion. Using 1H NOESY-generated internuclear distances to replicate the model of this oligomer and a derivative with an 8-oxo-dA5 lesion, we propose characteristics of helical distortion that DNA glycosylases might use for identifying this form of damage. In addition, this method of comparison can be used to study the repair …


Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa Aug 2016

Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa

Electronic Thesis and Dissertation Repository

The Kohn-Sham density functional theory relies on approximating the exchange-correlation energy functional or the corresponding potential. The behavior of the exchange-correlation potential as a function of position in a system can be used to detect and correct deficiencies of the parent functional. The too-fast decay of the potentials derived from common density functionals is a major problem, because it causes inaccurate Rydberg excitation energies and erroneous fractional charges in dissociating molecules. An efficient method to correct the shape of the exchange-correlation potential was proposed by Gaiduk et al. [A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev. …


Density Functional Theory Based Electrolyte Design Formulation For Lithium-Sulfur Batteries, Cynthia Ly, Carolyn Sturges, Vijay Murugesan Aug 2016

Density Functional Theory Based Electrolyte Design Formulation For Lithium-Sulfur Batteries, Cynthia Ly, Carolyn Sturges, Vijay Murugesan

STAR Program Research Presentations

Lithium-ion (Li-ion) batteries are commonly used in portable electronics such as cellphones and laptops. Most Li-ion batteries operate on intercalation principle with typical theoretical specific energy of 400-600 (Wh/Kg). There is great scientific interest in lithium-sulfur (Li-S) batteries as a possible successor of traditional Li-ion batteries because Li-S holds the potential of being a very powerful (1550 Wh/kg theoretical specific energy) yet very cost-efficient battery (due the abundance and inexpensiveness of sulfur). However, one major problem in Li-S battery research is the polysulfide “shuttle phenomenon”, which is the shuttling of polysulfide species due to the dissolution of sulfide from the …


Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr. Jul 2016

Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr.

Faculty Publications

The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a …