Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Chemistry

Effects Of Surface Ligation On Charge Extraction From Wurtzite Cadmium Selenide Quantum Platelets And Quantum Belts, Hailey Meyer Dec 2022

Effects Of Surface Ligation On Charge Extraction From Wurtzite Cadmium Selenide Quantum Platelets And Quantum Belts, Hailey Meyer

Arts & Sciences Electronic Theses and Dissertations

This dissertation presents the synthesis of flat, colloidal wurtzite CdSe quantum platelets and quantum belts for ligand exchange to novel and existing organic and inorganic L-, X-, and Z- type ligands. Use of these ligands in conjunction with the semiconductor nanocrystals allows for examination of their ligand exchange abilities, photoluminescence quenching efficiencies, and charge transfer properties.

First, zinc and cadmium dithiocarbamate compounds [M(S2CNR1R2)2] are used as ligands on wurtzite CdSe quantum belts. Complete ligand exchange is achieved when the belts are initially ligated with Cd(oleate)2, a Z-type ligand, prior to the exchange, as opposed to n-octylamine or ammonia, which are …


Local Spectroscopy Data Infrastructure: Solid State Nmr Crystallography With Experiment, First-Principal Analysis And Machine Learning, He Sun Dec 2022

Local Spectroscopy Data Infrastructure: Solid State Nmr Crystallography With Experiment, First-Principal Analysis And Machine Learning, He Sun

Arts & Sciences Electronic Theses and Dissertations

Solid-state magnetic resonance (SSNMR) spectroscopy is a powerful tool for obtaining precise information about the local bonding and morphology of materials. The detailed local structure of crystalline materials cannot be easily solved by traditional experimental methods such as X-ray diffraction (XRD). SSNMR combined with first principal calculation methods such as density functional theory (DFT) can be of great use in this research area. The methodology that is called “NMR crystallography” today has been widely applied to the determination of a wide range of solid materials with an increasing amount of computationally simulated NMR spectra. The construction of a well-established computational …


Toward Enhancing The Synthesis Of Renewable Polymers: Feedstock Conversions And Functionalizable Copolymers, Tedd Casey Wiessner Dec 2022

Toward Enhancing The Synthesis Of Renewable Polymers: Feedstock Conversions And Functionalizable Copolymers, Tedd Casey Wiessner

Arts & Sciences Electronic Theses and Dissertations

This thesis describes research under the rubric of the Center for Sustainable Polymers that is aimed at two separate goals. The goal of the first project (Chapters 1 and 2) was to develop a deeper mechanistic understanding of a method for the synthesis of linear α-olefins, while the second aimed at synthesizing statistical copolymers that incorporate olefin-containing monomers through ring-opening transesterification polymerization and showing that these copolymers could be functionalized. In Chapter 1, published methods for the conversion of fatty acids to linear α-olefins are reviewed to provide context for the mechanistic work we accomplished (Chapter 2). In Chapter 2 …


Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi Dec 2022

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi

Arts & Sciences Electronic Theses and Dissertations

Ultrasensitive detection and quantification of soluble, secreted and cell surface-bound proteins is critical for advancing our understanding of cellular systems, enabling effective drug development, novel therapies, and bio-diagnostics. However, exiting technologies are largely limited by their sensitivity, making the detection and quantification of low-abundant proteins extremely challenging. This forms a major barrier in various fields of biology and biomedical sciences. In this work, we introduce novel cellular analysis methodologies based on plasmon-enhanced fluorescence for analyzing cell structure and probing surface and secreted proteins from cells. In the first part, we introduce plasmon-enhanced expansion microscopy and demonstrate the effectiveness of employing …


Development Of Redox-Responsive Phenazine-Based Foldamers. Acylative Kinetic Resolution Of Hydroxamic Acids, Jingwei Yin Dec 2022

Development Of Redox-Responsive Phenazine-Based Foldamers. Acylative Kinetic Resolution Of Hydroxamic Acids, Jingwei Yin

Arts & Sciences Electronic Theses and Dissertations

Two different research directions have been presented in this thesis. The first project is about phenazine-based foldamers as molecular actuators. Researchers have been interested in the design and synthesis of foldamers and molecular actuators for years. We began our exploration by demonstrating that phenazine-1,6-dicarboxamides can function as redox-responsive molecular switches. We then designed and synthesized two generations of phenazine-based interleafed foldamers and studied their stability and redox behaviors under chemical and electrochemical conditions. In the second project, we have developed the first acylative kinetic resolution on hydroxamic acids. Although chiral hydroxamic acids have extensive applications, synthetic methods towards them are …


The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow Dec 2022

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow

Arts & Sciences Electronic Theses and Dissertations

This dissertation covers a wide range of topics but is linked by the common theme of radiation interacting with materials and studying the result of those interactions. The introduction describes the fundamentals of how radiation interacts with material and how we are able to detect that radiation and the application of how we use those interactions in radiation oncology. The thesis starts with a chapter detailing the temperature dependence of the photophysics in two organic scintillators. This chapter is the foundation for a future study that will look the degree to which these scintillators can distinguish between gammas and neutrons …