Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Chemistry

Synthesis, Structure-Activity And Mechanism Studies Of Poly(Guanylurea)S Against Mycobacteria, Michelle M. Miranda Jun 2022

Synthesis, Structure-Activity And Mechanism Studies Of Poly(Guanylurea)S Against Mycobacteria, Michelle M. Miranda

FIU Electronic Theses and Dissertations

Tuberculosis (TB) continues to be a serious threat worldwide, especially in developing countries. Current first-line treatment for TB infections is a multidrug regimen for 4-9 months; if not taken as prescribed, drug-resistant TB can emerge. Novel drugs with unconventional targets are warranted to lessen the lengthy and four-drug treatment. Antimicrobial polymers mimicking naturally occurring antimicrobial peptides (AMPs) have gained much attention due to their enzymatic stability, tunability, cost-effectiveness, and unique mode of action - directly or indirectly - on bacterial membrane. However, selectivity and toxicity have limited their biological applications. Previously, our group synthesized a novel class of antimicrobial polymers, …


Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo Nov 2020

Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo

FIU Electronic Theses and Dissertations

A great challenge facing humanity in the 21st century is finding inexhaustible and inexpensive energy sources to power the planet. Renewable energies are the best solutions because of their abundance, diversity, and pollution-free emission. Solar energy is the cleanest and most abundant renewable energy source available. In the continuing quest for efficient and low-cost solar cells, perovskite solar cells (PSCs) have emerged as a potential replacement for silicon solar cells. Since 2009, the record efficiencies of PSCs have been skyrocketing from 3.8 % to 25.2 % and are now approaching the theoretical limit. Along with the three-dimensional perovskites used …


Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu Nov 2020

Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu

FIU Electronic Theses and Dissertations

Surface Enhanced Raman Spectroscopy (SERS) is an analytical technique in which nanostructured substrates amplify the inherently weak Raman signal of an adsorbed species by several orders of magnitude, enabling the detection of trace compounds, up to the single molecule level. While this may be an exceptional tool for any analytical scientist, SERS is at present relegated to the role of academic sensation, and is underutilized in everyday analytical practice. The SERS community is increasingly attributing this setback to a poor understanding of nanoscale surfaces and their chemical environment; since molecular adsorption at the nanostructured surface enables SERS detection, uncertainty about …


The Investigation Of Photocatalytic And Adsorptive Properties Of Humic Acid Grafted Magnetite Nanoparticles For The Remediation Of Arsenic, Selenium And Phosphorous From Water, Mohammad Mamunur Rashid Jun 2018

The Investigation Of Photocatalytic And Adsorptive Properties Of Humic Acid Grafted Magnetite Nanoparticles For The Remediation Of Arsenic, Selenium And Phosphorous From Water, Mohammad Mamunur Rashid

FIU Electronic Theses and Dissertations

The crisis of freshwater has been a big concern worldwide. Water contamination that occurs through the discharge of toxic pollutants from different natural and anthropogenic sources have worsened the situation. Adsorption has emerged as a simple and economical water treatment procedure although the challenge is to find the right adsorbent that can efficiently remove the target contaminant followed by their easy recovery from the reaction vessel. In this dissertation, I have focused on the synthesis, characterizations and applications of environmentally compatible and magnetic humic acid coated magnetite nanoparticles (HA-MNP) as a potential adsorbent for water purification.

Phosphate is an essential …


Understanding The Functional Group-Dependent Self-Assembly And Cellular Entry Of Cationic Conjugated Polymer Nanoparticles, Prakash Manandhar Mar 2018

Understanding The Functional Group-Dependent Self-Assembly And Cellular Entry Of Cationic Conjugated Polymer Nanoparticles, Prakash Manandhar

FIU Electronic Theses and Dissertations

Highly fluorescent conjugated polymers (CPs) are an important class of biomaterials used for various biological applications including labelling, sensing, and delivery of biological substances. Synthetic versatility and tunable emission make CPs a superior class of biomaterials. Understanding the structure-function relationship of CPs plays a vital role in designing high performing biomaterials. The cationic CPs are self-assembled to conjugated polymer nanoparticles (CPNs) in an aqueous environment due to their amphiphilicity. The physical and biophysical properties of CPNs are highly dependent on the chemical functionality and backbone structure of CPs. Modulation of the surface property and backbone structure of CPNs play an …


Hybrid Electrochemical Capacitors: Materials, Optimization, And Miniaturization, Richa Agrawal Jan 2018

Hybrid Electrochemical Capacitors: Materials, Optimization, And Miniaturization, Richa Agrawal

FIU Electronic Theses and Dissertations

With the ever-advancing technology, there is an incessant need for reliable electrochemical energy storage (EES) components that can provide desired energy and power. At the forefront of EES systems are electrochemical capacitors (ECs), also known as supercapacitors that typically have higher power and superior cycle longevity but lower energy densities than their battery counterparts. One of the routes to achieve higher energy density for ECs is using the hybrid EC configuration, which typically utilizes a redox electrode coupled with a counter double-layer type electrode.

In this dissertation, both scale-up (coin-cell type) as well as scale-down (on-chip miniaturized) hybrid ECs were …


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani Oct 2017

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this …


Carbon Nanotube- And Gold Nanoparticle-Based Materials For Electrochemical And Colorimetric Sensing Applications, Janak Paudyal 9255967 Nov 2016

Carbon Nanotube- And Gold Nanoparticle-Based Materials For Electrochemical And Colorimetric Sensing Applications, Janak Paudyal 9255967

FIU Electronic Theses and Dissertations

Carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) are widely used for sensing applications due to their distinctive electrical and optical properties, and we have explored the development of methods that enable the incorporation of these nanomaterials into new and improved sensing devices.

As a means for fabricating simple, low-cost and fast detection platforms for various applications, we have developed paper-based electrochemical detection platforms based on CNTs or platinum nanoparticle (PtNP)-CNT composite materials. We describe the use of a paper-based, low density, a three-dimensional thin film of interconnected CNTs as an electrode material. We studied the electrochemical properties of these paper-based …


Development Of A Two-Fluid Drag Law For Clustered Particles Using Direct Numerical Simulation And Validation Through Experiments, Ahmadreza Abbasi Baharanchi Nov 2015

Development Of A Two-Fluid Drag Law For Clustered Particles Using Direct Numerical Simulation And Validation Through Experiments, Ahmadreza Abbasi Baharanchi

FIU Electronic Theses and Dissertations

This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and …


Conjugated Polymer Nanoparticles For Biological Labeling And Delivery, Eladio A. Mendez Mar 2015

Conjugated Polymer Nanoparticles For Biological Labeling And Delivery, Eladio A. Mendez

FIU Electronic Theses and Dissertations

Cancer remains one of the world’s most devastating diseases, with more than 10 million new cases every year. However, traditional treatments have proven insufficient for successful medical management of cancer due to the chemotherapeutics’ difficulty in achieving therapeutic concentrations at the target site, non-specific cytotoxicity to normal tissues, and limited systemic circulation lifetime. Although, a concerted effort has been placed in developing and successfully employing nanoparticle(NP)-based drug delivery vehicles successfully mitigate the physiochemical and pharmacological limitations of chemotherapeutics, work towards controlling the subcellular fate of the carrier, and ultimately its payload, has been limited. Because efficient therapeutic action requires drug …