Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

Stretchable Ultrasheer Fabrics As Semitransparent Electrodes For Wearable Light-Emitting E-Textiles With Changeable Display Patterns, Yunyun Wu, Sara S. Mechael, Cecilia Lerma, R. Stephen Carmichael, Tricia Breen Carmichael Apr 2020

Stretchable Ultrasheer Fabrics As Semitransparent Electrodes For Wearable Light-Emitting E-Textiles With Changeable Display Patterns, Yunyun Wu, Sara S. Mechael, Cecilia Lerma, R. Stephen Carmichael, Tricia Breen Carmichael

Chemistry and Biochemistry Publications

Despite the development throughout human history of a wealth of textile materials and structures, the porous structures and non-planar surfaces of textiles are often viewed as problematic for the fabrication of wearable e-textiles and smart clothing. Here, we demonstrate a new textile-centric design paradigm in which we use the textile structure as an integral part of wearable device design. We coat the open framework structure of an ultrasheer knitted textile with a conformal gold film using solution-based metallization to form gold-coated ultrasheer electrodes that are highly conductive (3.6 ± 0.9 Ω/sq) and retain conductivity to 200% strain with R/R0 < 2. The ultrasheer electrodes produce wearable, highly stretchable light-emitting e-textiles that function to 200% strain. Stencil printing a wax resist provides patterned electrodes for patterned light emission; furthermore, incorporating soft-contact lamination produces light-emitting textiles that exhibit, for the first time, readily changeable patterns of illumination.


Metal-Interface-Elastomer (Mine) Structures For Stretchable Electronics, Tricia Carmichael, Akhil Vohra, Kory Schlingman, R. Stephen Carmichael May 2018

Metal-Interface-Elastomer (Mine) Structures For Stretchable Electronics, Tricia Carmichael, Akhil Vohra, Kory Schlingman, R. Stephen Carmichael

Chemistry and Biochemistry Publications

The future of soft, conformable, and robust wearable electronics will require elastomers to provide mechanical stabilization, a soft surface to interact with human wearers, and a crucial physical barrier to protect stretchable devices from the environment. It is a difficult challenge, however, for a single elastomer to fulfill each of these needs. Here, we present a new approach that fuses a membrane of poly(dimethylsiloxane) (PDMS) onto the surface of a transparent butyl rubber (T-IIR) substrate using an organosilane-based molecular glue. The resulting membrane-interface-elastomer (MINE) structures uniquely combine the surface chemistry of PDMS with the intrinsically low gas permeability of T-IIR …


Solution Deposition Of Conformal Gold Coatings On Knitted Fabric For E-Textiles And Electroluminescent Clothing, Tricia Carmichael, Yunyun Wu, Sara S. Mechael, Yiting Chen Jan 2018

Solution Deposition Of Conformal Gold Coatings On Knitted Fabric For E-Textiles And Electroluminescent Clothing, Tricia Carmichael, Yunyun Wu, Sara S. Mechael, Yiting Chen

Chemistry and Biochemistry Publications

The vision for wearable electronics involves creating an imperceptible boundary between humans and devices. Integrating electronic devices into clothing represents an important path to this vision; however, combining conductive materials with textiles is challenging due to the porous structure of knitted textiles. Stretchability depends on maintaining the void structure between the yarns of the fabric; filling these voids with conductive materials stiffens the textile and can lead to detrimental cracking. The authors demonstrate the solution-based metallization of a knitted textile that conformally coats individual fibers with gold, leaving the void structure intact. The resulting gold-coated textile is highly conductive, with …


A Self-Assembled, Low-Cost, Microstructured Layer For Extremely Stretchable Gold Films, Tricia Carmichael, Heather L. Filiatrault, R. Stephen Carmichael, Rachel A. Boutette Sep 2015

A Self-Assembled, Low-Cost, Microstructured Layer For Extremely Stretchable Gold Films, Tricia Carmichael, Heather L. Filiatrault, R. Stephen Carmichael, Rachel A. Boutette

Chemistry and Biochemistry Publications

We demonstrate a simple, low-cost, and green approach to deposit a microstructured coating on the silicone elastomer polydimethylsiloxane (PDMS) that can be coated with gold to produce highly stretchable and conductive films. The microstructured coating is fabricated using an aqueous emulsion of poly(vinyl acetate) (PVAc): common, commercially available white glue. The aqueous glue emulsion self-assembles on the PDMS surface to generate clustered PVAc globules, which can be conformally coated with gold. The microstructured surface provides numerous defect sites that localize strain when the structure is stretched, resulting in the initiation of numerous microcracks. As the structure is further elongated, the …