Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Chemistry

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg May 2023

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng Apr 2021

Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng

Doctoral Dissertations

Electrospun fibers are high-surface-area materials widely used in applications ranging from batteries to wound dressings. Typically, an electrospinning precursor solution is prepared by dissolving a high-molecular-weight polymer in an organic solvent to form a sufficiently entangled solution. Our approach bypasses the requirement for entanglements and completely avoids toxic chemicals by focusing on using an aqueous complex coacervates solution. Coacervates are a dense, polymer-rich liquid phase resulting from the associative electrostatic complexation of oppositely charged macroions. We were the first to demonstrate that liquid complex coacervates could be successfully electrospun into polyelectrolyte complex (PEC) fibers. A canonical coacervate system was formed …


Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer Jan 2021

Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer

Doctoral Dissertations

“This research investigates the physical and chemical processes that contribute to the detonation synthesis of silicon carbide nanoparticles. Bulk production of SiC nanoparticles through detonation is possible due to pressures achieved over 20 GPa and temperatures over 2000 K as well as quenching rates in excess of 13 billion K/second. These conditions catalyze reaction and bottom-up molecular growth while retaining particles < 100 nm in diameter. In this work, detonation synthesis of SiC was demonstrated by incorporation of polycarbosilane, an SiC precursor material, into an RDX/TNT explosive matrix prior to detonation. Detonation Synthesis of SiC was also accomplished by reacting elemental silicon with carbon liberated by the detonation of negatively oxygen balanced TNT. Hydrodynamic simulation of a 60:40 mass ratio RDX/TNT detonation created conditions thermodynamically suitable to produce cubic silicon carbide within the first 500 nanoseconds after the passage of the detonation wave while carbon remains chemically reactive for molecular formation. Simulations and experimental tests indicated that loading configuration and impedance mismatch of the precursor additives used in detonation synthesis results in conditions in the additives that exceed the accepted detonation pressure of the explosive by greater than three times. Finally, a full factorial experimental design showed increasing silicon concentration, reducing silicon size, and reducing oxygen balance by adjusting the ratio of RDX to TNT decreased the explosives detonation pressure by 20% and increased the soot yield and concentration of SiC observed in the detonation products by 82% and 442% respectively”--Abstract, page iv.


Design And Synthesis Of Lipid Probes Used For Membrane Derivatization And Fusion, Stuart Allen Whitehead Dec 2016

Design And Synthesis Of Lipid Probes Used For Membrane Derivatization And Fusion, Stuart Allen Whitehead

Doctoral Dissertations

Lipids control a variety of complex biological processes. Bulk lipids such as phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE) represent the major components of cellular membranes. In addition, unilamellar vesicles composed of lipids (liposomes) are valuable for delivery applications since they can encapsulate and transport drugs and other agents. In order to maximize delivery efficiency and target specific membranes, the ability to trigger and control vesicle-vesicle fusion is desirable. Such approaches generally seek to mimic the membrane fusion machinery present in nature while imparting specificity in the membranes that undergo fusion. The goal of this work is selective drug delivery …


New Polyanion-Based Cathode Materials For Alkali-Ion Batteries, Hooman Yaghoobnejad Asl Jan 2016

New Polyanion-Based Cathode Materials For Alkali-Ion Batteries, Hooman Yaghoobnejad Asl

Doctoral Dissertations

"A number of new materials have been discovered through exploratory synthesis with the aim to be studied as the positive electrode (cathode) in Li-ion and Na-ion batteries. The focus has been set on the ease of synthesis, cost and availability of active ingredients in the battery, and decent cycle-life performance through a combination of iron and several polyanionic ligands. An emphasis has been placed also on phosphite (HPO32-) as a polyanionic ligand, mainly due to the fact that it has not been studied seriously before as a polyanion for cathode materials. The concept of mixed polyanions, for …


Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder May 2015

Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder

Doctoral Dissertations

Heterogeneous catalysts are responsible for billions of dollars of industrial output and have a profound, if often understated, effect on our everyday lives. New catalyst technologies and methods to enhance existing catalysts are essential to meeting consumer demands and overcoming environmental concerns. This dissertation focuses on the development of catalysts for low temperature carbon monoxide oxidation. CO [carbon monoxide] oxidation is often used as a probe reaction to test overall oxidation activity of a given catalyst and is an important reaction in the elimination of toxic pollutants from automotive exhaust streams. The work included here presents three new heterogeneous catalysts …


Tantalum Carbene And Imide Complexes. Synthesis, Characterization, And Pathways Of Formation, Julia Kathryn Covington Abbott Dec 2010

Tantalum Carbene And Imide Complexes. Synthesis, Characterization, And Pathways Of Formation, Julia Kathryn Covington Abbott

Doctoral Dissertations

This dissertation focuses on two different types of organometallic compounds, carbenes and imides. The first project deals with the archetypal Schrock carbene, and the second project studies complexes that contain metal-nitrogen bonds, both amides and imides.

A summary of the research in this dissertation is discussed in Chapter 1. Chapter 2 begins the studies of the archetypal Schrock carbene (ButCH2)3Ta=CHBut. The studies include the synthesis of deuterated compounds (ButCD2)3TaCl2 and ButCD2Li, observation and identification of the intermediate, Ta(CD2But …